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Lecture 5:
Inverse matrix (continued).

Transpose of a matrix.



Identity matrix

Definition. The identity matrix (or unit matrix) is

a diagonal matrix with all diagonal entries equal to 1.
The n×n identity matrix is denoted In or simply I .

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0

0 1 0
0 0 1



.

In general, I =







1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1






.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Inverse matrix

Definition. Let A be an n×n matrix. The inverse
of A is an n×n matrix, denoted A−1, such that

AA−1 = A−1A = I .

If A−1 exists then the matrix A is called invertible.
Otherwise A is called singular.

Let A and B be n×n matrices. If A is invertible

then we can divide B by A:

left division: A−1B, right division: BA−1.

Remark. There is no notation for the matrix

division and the notion is not really used.



Basic properties of inverse matrices

• If B = A−1 then A = B−1. In other words, if A
is invertible, so is A−1, and A = (A−1)−1.

• The inverse matrix (if it exists) is unique.

Moreover, if AB = CA = I for some n×n matrices
B and C , then B = C = A−1.

Indeed, B = IB = (CA)B = C (AB) = CI = C .

• If n×n matrices A and B are invertible, so is

AB , and (AB)−1 = B−1A−1.

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I ,
(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I .

• Similarly, (A1A2 . . .Ak)
−1 = A−1

k . . .A−1

2
A−1

1
.



Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are
nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n ).











d1 0 . . . 0
0 d2 . . . 0
...

... . . . ...

0 0 . . . dn











−1

=











d−1

1
0 . . . 0

0 d−1

2
. . . 0

...
... . . . ...

0 0 . . . d−1

n













Inverting diagonal matrices

Theorem A diagonal matrix D = diag(d1, . . . , dn)
is invertible if and only if all diagonal entries are

nonzero: di 6= 0 for 1 ≤ i ≤ n.

If D is invertible then D−1 = diag(d−1

1
, . . . , d−1

n ).

Proof: If all di 6= 0 then, clearly,

diag(d1, . . . , dn) diag(d
−1

1
, . . . , d−1

n ) = diag(1, . . . , 1) = I ,

diag(d−1

1
, . . . , d−1

n ) diag(d1, . . . , dn) = diag(1, . . . , 1) = I .

Now suppose that di = 0 for some i . Then for any

n×n matrix B the ith row of the matrix DB is a
zero row. Hence DB 6= I as I has no zero rows.



Inverting 2×2 matrices

Definition. The determinant of a 2×2 matrix

A =

(

a b

c d

)

is detA = ad − bc .

Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if detA 6= 0.

If detA 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.



Theorem A matrix A =

(

a b

c d

)

is invertible if

and only if detA 6= 0. If detA 6= 0 then
(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

.

Proof: Let B =

(

d −b

−c a

)

. Then

AB = BA =

(

ad−bc 0
0 ad−bc

)

= (ad − bc)I2.

In the case detA 6= 0, we have A−1 = (detA)−1B .
In the case detA = 0, the matrix A is not invertible as
otherwise AB = O =⇒ A−1(AB) = A−1O = O

=⇒ (A−1A)B = O =⇒ I2B = O =⇒ B = O

=⇒ A = O, but the zero matrix is singular.



Problem. Solve a system

{

4x + 3y = 5,
3x + 2y = −1.

This system is equivalent to a matrix equation Ax = b,

where A =

(

4 3
3 2

)

, x =

(

x

y

)

, b =

(

5
−1

)

.

We have detA = − 1 6= 0. Hence A is invertible.

Ax = b =⇒ A−1(Ax) = A−1b =⇒ (A−1A)x = A−1b
=⇒ x = A−1b.

Conversely, x = A−1b =⇒ Ax = A(A−1b) = (AA−1)b = b.

(

x

y

)

=

(

4 3
3 2

)

−1(

5
−1

)

=
1

−1

(

2 −3
−3 4

)(

5
−1

)

=

(

−13
19

)



System of n linear equations in n variables:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·
an1x1 + an2x2 + · · · + annxn = bn

⇐⇒ Ax = b,

where

A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...

an1 an2 . . . ann











, x =











x1
x2
...

xn











, b =











b1
b2
...

bn











.

Theorem If the matrix A is invertible then the
system has a unique solution, which is x = A−1b.



General results on inverse matrices

Theorem 1 Given an n×n matrix A, the following
conditions are equivalent:

(i) A is invertible;
(ii) x = 0 is the only solution of the matrix equation Ax = 0;
(iii) the matrix equation Ax = b has a unique solution for
any n-dimensional column vector b;
(iv) the row echelon form of A has no zero rows;
(v) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row
operations converts a matrix A into the identity matrix.
Then the same sequence of operations converts the identity

matrix into the inverse matrix A−1.



Row echelon form of a square matrix:






























∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































invertible case noninvertible case

For any matrix in row echelon form, the number of columns
with leading entries equals the number of rows with leading
entries. For a square matrix, also the number of columns
without leading entries (i.e., the number of free variables in a
related system of linear equations) equals the number of rows
without leading entries (i.e., zero rows).



Row echelon form of a square matrix:






























∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































invertible case noninvertible case

Hence the row echelon form of a square matrix A is either
strict triangular or else it has a zero row. In the former case,
the equation Ax = b always has a unique solution. In the
latter case, Ax = b never has a unique solution. Also, in the
former case the reduced row echelon form of A is I .



Example. A =





3 −2 0
1 0 1

−2 3 0



.

To check whether A is invertible, we convert it to row echelon

form.

Interchange the 1st row with the 2nd row:




1 0 1
3 −2 0

−2 3 0





Add −3 times the 1st row to the 2nd row:




1 0 1

0 −2 −3
−2 3 0











1 0 1
0 −2 −3

−2 3 0





Add 2 times the 1st row to the 3rd row:




1 0 1

0 −2 −3
0 3 2





Multiply the 2nd row by −0.5:




1 0 1
0 1 1.5

0 3 2











1 0 1
0 1 1.5

0 3 2





Add −3 times the 2nd row to the 3rd row:




1 0 1

0 1 1.5
0 0 −2.5





Multiply the 3rd row by −0.4:




1 0 1
0 1 1.5

0 0 1











1 0 1

0 1 1.5

0 0 1





We already know that the matrix A is invertible.

Let’s proceed towards reduced row echelon form.

Add −1.5 times the 3rd row to the 2nd row:




1 0 1

0 1 0
0 0 1





Add −1 times the 3rd row to the 1st row:




1 0 0
0 1 0

0 0 1







To obtain A−1, we need to apply the following
sequence of elementary row operations to the

identity matrix:

• interchange the 1st row with the 2nd row,
• add −3 times the 1st row to the 2nd row,

• add 2 times the 1st row to the 3rd row,
• multiply the 2nd row by −0.5,

• add −3 times the 2nd row to the 3rd row,
• multiply the 3rd row by −0.4,

• add −1.5 times the 3rd row to the 2nd row,
• add −1 times the 3rd row to the 1st row.



A convenient way to compute the inverse matrix
A−1 is to merge the matrices A and I into one 3×6

matrix (A | I ), and apply elementary row operations
to this new matrix.

A =





3 −2 0
1 0 1

−2 3 0



, I =





1 0 0
0 1 0
0 0 1





(A | I ) =





3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1











3 −2 0 1 0 0
1 0 1 0 1 0

−2 3 0 0 0 1





Interchange the 1st row with the 2nd row:




1 0 1 0 1 0
3 −2 0 1 0 0

−2 3 0 0 0 1





Add −3 times the 1st row to the 2nd row:




1 0 1 0 1 0
0 −2 −3 1 −3 0

−2 3 0 0 0 1











1 0 1 0 1 0
0 −2 −3 1 −3 0

−2 3 0 0 0 1





Add 2 times the 1st row to the 3rd row:




1 0 1 0 1 0

0 −2 −3 1 −3 0
0 3 2 0 2 1





Multiply the 2nd row by −0.5:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0

0 3 2 0 2 1











1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0

0 3 2 0 2 1





Add −3 times the 2nd row to the 3rd row:




1 0 1 0 1 0

0 1 1.5 −0.5 1.5 0
0 0 −2.5 1.5 −2.5 1





Multiply the 3rd row by −0.4:




1 0 1 0 1 0
0 1 1.5 −0.5 1.5 0

0 0 1 −0.6 1 −0.4











1 0 1 0 1 0

0 1 1.5 −0.5 1.5 0
0 0 1 −0.6 1 −0.4





Add −1.5 times the 3rd row to the 2nd row:




1 0 1 0 1 0
0 1 0 0.4 0 0.6
0 0 1 −0.6 1 −0.4





Add −1 times the 3rd row to the 1st row:




1 0 0 0.6 0 0.4
0 1 0 0.4 0 0.6

0 0 1 −0.6 1 −0.4



 = (I |A−1)



Thus





3 −2 0
1 0 1

−2 3 0





−1

=







3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5






.

That is,




3 −2 0

1 0 1
−2 3 0











3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5






=





1 0 0

0 1 0
0 0 1



,







3

5
0 2

5

2

5
0 3

5

−3

5
1 −2

5











3 −2 0

1 0 1
−2 3 0



 =





1 0 0

0 1 0
0 0 1



.



Why does it work?




1 0 0

0 2 0
0 0 1









a1 a2 a3
b1 b2 b3
c1 c2 c3



 =





a1 a2 a3
2b1 2b2 2b3
c1 c2 c3



,





1 0 0
3 1 0
0 0 1









a1 a2 a3
b1 b2 b3
c1 c2 c3



=





a1 a2 a3
b1+3a1 b2+3a2 b3+3a3

c1 c2 c3



,





1 0 0
0 0 1

0 1 0









a1 a2 a3
b1 b2 b3
c1 c2 c3



 =





a1 a2 a3
c1 c2 c3
b1 b2 b3



.

Proposition Any elementary row operation can be
simulated as left multiplication by a certain matrix.



Elementary matrices

E =



















1
. . . O

1
r

1
O

. . .
1



















row #i

To obtain the matrix EA from A, multiply the ith

row by r . To obtain the matrix AE from A,
multiply the ith column by r .



Elementary matrices

E =



















1
... . . . O
0 · · · 1
...

... . . .
0 · · · r · · · 1
...

...
... . . .

0 · · · 0 · · · 0 · · · 1



















row #i

row #j

To obtain the matrix EA from A, add r times the
ith row to the jth row. To obtain the matrix AE

from A, add r times the jth column to the ith
column.



Elementary matrices

E =



















1 O
. . .

0 · · · 1
... . . . ...
1 · · · 0

. . .
O 1



















row #i

row #j

To obtain the matrix EA from A, interchange the

ith row with the jth row. To obtain AE from A,
interchange the ith column with the jth column.



Why does it work? (continued)

Assume that a square matrix A can be converted to

the identity matrix by a sequence of elementary row
operations. Then EkEk−1 . . .E2E1A = I , where

E1,E2, . . . ,Ek are elementary matrices simulating
those operations.

Applying the same sequence of operations to the

identity matrix, we obtain the matrix

B = EkEk−1 . . .E2E1I = EkEk−1 . . .E2E1.

Thus BA = I . Besides, B is invertible since

elementary matrices are invertible (why?). It
follows that A = B−1, then B = A−1.



Transpose of a matrix

Definition. Given a matrix A, the transpose of A,

denoted AT , is the matrix whose rows are columns
of A (and whose columns are rows of A). That is,

if A = (aij) then AT = (bij), where bij = aji .

Examples.

(

1 2 3

4 5 6

)T

=





1 4

2 5
3 6



,





7
8

9





T

= (7, 8, 9),

(

4 7

7 0

)T

=

(

4 7

7 0

)

.



Properties of transposes:

• (AT )T = A

• (A+ B)T = AT + BT

• (rA)T = rAT

• (AB)T = BTAT

• (A1A2 . . .Ak)
T = AT

k . . .AT
2
AT
1

• (A−1)T = (AT )−1



Definition. A square matrix A is said to be
symmetric if AT = A.

For example, any diagonal matrix is symmetric.

Proposition For any square matrix A the matrices

B = AAT and C = A+ AT are symmetric.

Proof:

BT = (AAT )T = (AT )TAT = AAT = B ,

CT = (A+ AT )T = AT + (AT )T = AT + A = C .


