MATH 311
Topics in Applied Mathematics |
Lecture 7:

Vector spaces.
Subspaces.



Linear operations on vectors

Let x = (x1,x0,...,%,) and y = (y1,¥2,...,¥n) be
n-dimensional vectors, and r € R be a scalar.

Vector sum: x+y = (x1+y,%+ Y2, .-, X0+ ¥n)
Scalar multiple:  rx = (rxy, rxa, . .., x,)

Zero vector: 0 =(0,0,...,0)

Negative of a vector:  —y = (—y1,—Y2,.--,—Yn)

Vector difference:
X—y=x+(=y)=(01 =y, X = Yo, ..., Xn— ¥n)



Properties of linear operations

X+y=y+x
(x+y)+z=x+(y+2
x+0=0+x=x
x+(—x)=(—x)+x=0
r(x+y)=rx+ry

(r + s)x = rx + sx
(rs)x = r(sx)

Ix = x

0x=0

(—1)x = —x



Linear operations on matrices

Let A= (a;j) and B = (bj) be mxn matrices,
and r € R be a scalar.

Matrix sum: A+ B = (a,-j + b,‘j)lg,'gm, 1<j<n
Scalar multiple:  rA = (rajj)i<i<m, 1<j<n

Zero matrix O:  all entries are zeros

Negative of a matrix:  —A = (—ajj)1<i<m, 1<j<n
Matrix difference: A — B = (ajj — bjj)1<i<m, 1<j<n
As far as the linear operations are concerned,

the mxn matrices have the same properties as
mn-dimensional vectors.



Vector space: informal description

Vector space = linear space = a set V of objects
(called vectors) that can be added and scaled.

That is, for any u,v € V and r € R expressions

[t v] and [ru

should make sense.

Certain restrictions apply. For instance,
u+v=v-+u,
2u + 3u = bu.

That is, addition and scalar multiplication in V
should be like those of n-dimensional vectors.



Vector space: definition

Vector space is a set V equipped with two
operations a: VXV =V and p:RxV =V
that have certain properties (listed below).

The operation « is called addition. For any
u,v € V, the element a(u,v) is denoted u + v.

The operation u is called scalar multiplication. For
any r € R and u € V, the element p(r,u) is
denoted ru.



Properties of addition and scalar multiplication
(brief)

Al. x+y=y+x

A2. (x+y)+z=x+(y+2)
A3. x+0=0+x=x

Ad. x+(—x)=(—x)+x=0
A5. r(x+y)=rx+ry

A6. (r + s)x = rx + sx

AT7. (rs)x = r(sx)

A8. 1x = x



Properties of addition and scalar multiplication (detailed)

Al. x+y=y+x forall x,ye V.
A2. (x+y)+z=x+(y+z) forall x,y,z€ V.
A3. There exists an element of V, called the zero

vector and denoted 0, such that x+0=04+x=x
forall x € V.

A4. For any x € V there exists an element of V/,
denoted —x, such that x + (—x) = (—x) +x=0.
A5. r(x+y)=rx+ry forallr e R and x,y € V.
A6. (r+s)x=rx+sx forall ry,se€R and x € V.
A7. (rs)x =r(sx) forall r,se€R and x € V.
A8. 1x =x forall x e V.

-~



e Associativity of addition implies that a multiple
sum uj + up + - - - + ug is well defined for any
up,up,...,Ux € V.

e Subtraction in V is defined as follows:
x—y=x+(=y)

e Addition and scalar multiplication are called
linear operations.

Given ug,uy,...,ux € V and r,n,...,n € R,

[ru1 + nuy + -+ reug

is called a linear combination of uj, uy, ..., ug.



Examples of vector spaces

In most examples, addition and scalar multiplication
are natural operations so that properties A1-A8 are
easy to verify.

e R": n-dimensional coordinate vectors

o M ,(R): mxn matrices with real entries

e R™: infinite sequences (x1,x,...), x; € R
Forany x = (x1,x2,...), ¥y = ()1,)2,...) ER® and r e R

let x+y=(x1+y,x2+y2,...), rx=(rx,rx,...).
Then 0=(0,0,...) and —x = (—xq, —X2,...).

e {0}: the trivial vector space
0+0=0 r0=0 -0=0.



Functional vector spaces

e F(R): the set of all functions f : R — R

Given functions f,g € F(R) and a scalar r € R, let
(f +g)(x) = f(x) + g(x) and (rf)(x) = rf(x) for all x € R.
Zero vector: o(x) = 0. Negative: (—f)(x) = —f(x).

e C(R): all continuous functions f : R — R

Linear operations are inherited from F(R). We only need to
check that f,g € C(R) = f+g,rf € C(R), the zero
function is continuous, and f € C(R) = —f € C(R).

e CY(R): all continuously differentiable functions
f-R—-R
e C(R): all smooth functions f: R — R

e P: all polynomials p(x) = ap+ aix + - - - + a,x"



Some general observations

e The zero vector is unique.

Suppose z; and z, are zero vectors. Then z; + z, = z, since
z; is a zero vector and z; + z, = z; since z, is a zero vector.
Hence z; = z,.

e For any x € V, the negative —x is unique.
Suppose y and y’ are both negatives of x. Let us compute the
sum y' +x+y in two ways:

(Y +x)+y=0+y=y,
Y+ x+y) =y +0=y.
By associativity of the vector addition, y =y’.



Some general observations

e (cancellation law) x+y = x'+y implies x = x’
for any x,x',y € V.
If x+y=x"+y then (x
associativity, (x +y) + (—
X

and (x +y)+(-y) =

+y)+(-y) = +y)+(-y). By
y) =x+(y+(-y)) =x
+(y+(-y)) =x +0=x". Hence

e Ox=0 forany xe V.

Indeed, OX +x =0x+1Ix=(0+1)x =1x =x =0+ x.
By the cancellation law, 0x = 0.

e (—1)x=—x forany xe V.

Indeed, x + (—1)x = (—1)x +x = (—1)x+ 1x = (-1 + 1)x
=0x = 0.



Counterexample: dumb scaling

Consider the set V = R" with the standard
addition and a nonstandard scalar multiplication:

r©x=0]| forany x ¢ R” and r € R.

Properties A1-A4 hold because they do not involve
scalar multiplication.

AS. rO(x+y)=roOx+roy <= 0=0+0
A6. (r+s)Ox=roOx+sOx <= 0=0+0
A7. (rs) Ox=r® (s ®x) <~ 0=0
A8. 1O x=x — 0=x

A8 is the only property that fails. As a consequence,
property A8 does not follow from properties A1-A7.



Counterexample: lazy scaling

Consider the set V = R" with the standard
addition and a nonstandard scalar multiplication:

for any x € R" and r € R.

Properties A1-A4 hold because they do not involve
scalar multiplication.

AS. rO(X+Yy)=rOx+roOoy<=x+y=x+y
A6. (r+s)Ox=rOx+sOx <= XxX=X+X
A7. (rs) Ox=r©® (s ®x) — X=X
A8. 1O x =x & X=X

The only property that fails is A6.



Weird example

Consider the set V =R, of positive numbers with a
nonstandard addition and scalar multiplication:

Al.
A2.
A3.
A4.
Ab5.
Ab.
AT.
A8.

for any x,y € R,.

rox=x"| forany x € Ry and r € R.

XOy=ydx < Xy = yX
(xoy)dz=xd(y®2) — (xy)z =x(y2)
X®(=(Bx=x <= x(=(x=x (holds for ( =1)
x®Gn=n®x=1 <= xn=nx=1 (holds for n=x71)
roxey)=(rox)e(roy) <= (xy) =xy’
(r+s)ox=(rox)®(s®x) — X =x"x°
(rs)ox=ro(s®x) = x*=(x)"

1Ox=x — x'=x



Subspaces of vector spaces

Definition. A vector space V} is a subspace of a
vector space V if V C V and the linear operations
on V{ agree with the linear operations on V.

Examples.
e F(R): all functions f:R — R

e C(R): all continuous functions f : R — R
C(R) is a subspace of F(R).

e P: polynomials p(x) = ag + aix + - - - + agx*

e P,: polynomials of degree less than n

P, is a subspace of P.



Subspaces of vector spaces

Counterexamples.
e P: polynomials p(x) = ag+ aix + -+ + apx
e P¥: polynomials of degree n (n > 0)

n

P is not a subspace of P.

—x"+ (x"+1)=1¢ P; = P} is not a vector space
(addition is not well defined).

e R with the standard linear operations
e R, with the operations @ and ®

R, is not a subspace of R since the linear
operations do not agree.



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However
S need not be closed under these operations.

Proposition A subset S of a vector space V is a
subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x,yeS —= x+yesS,
xeS — rxeS§ forall reR.

Proof:  “only if" is obvious.

“if": properties like associative, commutative, or distributive
law hold for S because they hold for V. We only need to
verify properties A3 and A4. Take any x € S (note that S is
nonempty). Then 0 =0x € S. Also, —x = (—1)x € S.
Thus 0 and —x in S are the same as in V.



Example. V = R2.

e Theline x —y =0 is a subspace of R?.

The line consists of all vectors of the form (t,t), t € R.
(t,t)+ (s,s) = (t+s,t+s) = closed under addition
r(t,t) = (rt,rt) = closed under scaling

2

e The parabola y = x? is not a subspace of R?.

It is enough to find one explicit counterexample.
Counterexample 1: (1,1)+ (—1,1) = (0,2).

(1,1) and (—1,1) lie on the parabola while (0,2) does not
—> not closed under addition

Counterexample 2: 2(1,1) = (2,2).

(1,1) lies on the parabola while (2,2) does not

— not closed under scaling



Example. V = R3.

e The plane z =0 is a subspace of R3.

e The plane z =1 is not a subspace of R3.

e Theline t(1,1,0), t € R is a subspace of R®
and a subspace of the plane z = 0.

e Theline (1,1,1)+t(1,—1,0),t € R is not a
subspace of R? as it lies in the plane x +y + z = 3,
which does not contain 0.

e In general, a straight line or a plane in R3 is a
subspace if and only if it passes through the origin.



