MATH 311

Lecture 7:

Vector spaces. Subspaces.

Topics in Applied Mathematics I

Linear operations on vectors

Let $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $\mathbf{y} = (y_1, y_2, \dots, y_n)$ be n-dimensional vectors, and $r \in \mathbb{R}$ be a scalar.

Vector sum:
$$\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n)$$

Scalar multiple:
$$r\mathbf{x} = (rx_1, rx_2, \dots, rx_n)$$

Zero vector:
$$\mathbf{0} = (0, 0, ..., 0)$$

Negative of a vector:
$$-\mathbf{y} = (-y_1, -y_2, \dots, -y_n)$$

Vector difference:

$$\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y}) = (x_1 - y_1, x_2 - y_2, \dots, x_n - y_n)$$

Properties of linear operations

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
 $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$

 $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$

 $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$

(rs)x = r(sx)

 $(-1)\mathbf{x} = -\mathbf{x}$

1x = x

0 = 0

$$x + 0 = 0 + x = x$$

$$-x)$$
 -

$$x + (-x) = (-x) + x = 0$$

Linear operations on matrices

Let $A=(a_{ij})$ and $B=(b_{ij})$ be $m\times n$ matrices, and $r\in\mathbb{R}$ be a scalar.

Matrix sum:
$$A + B = (a_{ij} + b_{ij})_{1 \le i \le m, \ 1 \le j \le n}$$

Scalar multiple: $rA = (ra_{ij})_{1 \le i \le m, \ 1 \le j \le n}$

Zero matrix O: all entries are zeros

Negative of a matrix:
$$-A = (-a_{ij})_{1 \le i \le m, \ 1 \le j \le n}$$

Matrix difference: $A - B = (a_{ij} - b_{ij})_{1 \le i \le m, \ 1 \le j \le n}$

As far as the linear operations are concerned, the $m \times n$ matrices have the same properties as mn-dimensional vectors.

Vector space: informal description

Vector space = linear space = a set V of objects (called vectors) that can be added and scaled.

That is, for any
$$\mathbf{u},\mathbf{v}\in V$$
 and $r\in\mathbb{R}$ expressions $\boxed{\mathbf{u}+\mathbf{v}}$ and $\boxed{r\mathbf{u}}$

should make sense.

Certain restrictions apply. For instance,
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}, \\ 2\mathbf{u} + 3\mathbf{u} = 5\mathbf{u}.$$

That is, addition and scalar multiplication in V should be like those of n-dimensional vectors.

Vector space: definition

Vector space is a set V equipped with two operations $\alpha: V \times V \to V$ and $\mu: \mathbb{R} \times V \to V$ that have certain properties (listed below).

The operation α is called *addition*. For any $\mathbf{u}, \mathbf{v} \in V$, the element $\alpha(\mathbf{u}, \mathbf{v})$ is denoted $\mathbf{u} + \mathbf{v}$.

The operation μ is called *scalar multiplication*. For any $r \in \mathbb{R}$ and $\mathbf{u} \in V$, the element $\mu(r, \mathbf{u})$ is denoted $r\mathbf{u}$.

Properties of addition and scalar multiplication (brief)

A1.
$$x + y = y + x$$

A2. $(x + y) + z = x + (y + z)$

A3.
$$x + 0 = 0 + x = x$$

A4.
$$x + (-x) = (-x) + x = 0$$

$$\mathsf{A5}.\ \ r(\mathsf{x}+\mathsf{y})=r\mathsf{x}+r\mathsf{y}$$

$$\mathsf{A6.}\ (r+s)\mathbf{x}=r\mathbf{x}+s\mathbf{x}$$

A7.
$$(rs)x = r(sx)$$

A8.
$$1x = x$$

Properties of addition and scalar multiplication (detailed)

- A1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for all $\mathbf{x}, \mathbf{y} \in V$.
- A2. (x + y) + z = x + (y + z) for all $x, y, z \in V$.
- A3. There exists an element of V, called the *zero* vector and denoted $\mathbf{0}$, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.
- A4. For any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$.
- A5. $r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$ for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$.
- A6. $(r+s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.
- A7. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$.
- A8. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

- Associativity of addition implies that a multiple sum $\mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_k$ is well defined for any $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$.
- **Subtraction** in V is defined as follows: $\mathbf{x} \mathbf{y} = \mathbf{x} + (-\mathbf{y})$.
- Addition and scalar multiplication are called **linear operations**.

Given
$$\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k \in V$$
 and $r_1, r_2, \dots, r_k \in \mathbb{R}$,
$$\boxed{r_1\mathbf{u}_1 + r_2\mathbf{u}_2 + \dots + r_k\mathbf{u}_k}$$

is called a **linear combination** of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$.

Examples of vector spaces

In most examples, addition and scalar multiplication are natural operations so that properties A1–A8 are easy to verify.

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences $(x_1, x_2, ...)$, $x_i \in \mathbb{R}$ For any $\mathbf{x} = (x_1, x_2, ...)$, $\mathbf{y} = (y_1, y_2, ...) \in \mathbb{R}^{\infty}$ and $r \in \mathbb{R}$ let $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ...)$, $r\mathbf{x} = (rx_1, rx_2, ...)$. Then $\mathbf{0} = (0, 0, ...)$ and $-\mathbf{x} = (-x_1, -x_2, ...)$.
- $\{0\}$: the trivial vector space 0 + 0 = 0, r0 = 0, -0 = 0.

Functional vector spaces

- $F(\mathbb{R})$: the set of all functions $f: \mathbb{R} \to \mathbb{R}$ Given functions $f, g \in F(\mathbb{R})$ and a scalar $r \in \mathbb{R}$, let (f+g)(x) = f(x) + g(x) and (rf)(x) = rf(x) for all $x \in \mathbb{R}$. Zero vector: o(x) = 0. Negative: (-f)(x) = -f(x).
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$ Linear operations are inherited from $F(\mathbb{R})$. We only need to check that $f,g \in C(\mathbb{R}) \implies f+g,rf \in C(\mathbb{R})$, the zero function is continuous, and $f \in C(\mathbb{R}) \implies -f \in C(\mathbb{R})$.
- $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$
 - $C^{\infty}(\mathbb{R})$: all smooth functions $f: \mathbb{R} \to \mathbb{R}$
 - \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Some general observations

• The zero vector is unique.

Suppose \mathbf{z}_1 and \mathbf{z}_2 are zero vectors. Then $\mathbf{z}_1 + \mathbf{z}_2 = \mathbf{z}_2$ since \mathbf{z}_1 is a zero vector and $\mathbf{z}_1 + \mathbf{z}_2 = \mathbf{z}_1$ since \mathbf{z}_2 is a zero vector. Hence $\mathbf{z}_1 = \mathbf{z}_2$.

• For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

Suppose y and y' are both negatives of x. Let us compute the sum y' + x + y in two ways:

$$(y' + x) + y = 0 + y = y,$$

 $y' + (x + y) = y' + 0 = y'.$

By associativity of the vector addition, $\mathbf{y} = \mathbf{y}'$.

Some general observations

• (cancellation law) $\mathbf{x} + \mathbf{y} = \mathbf{x}' + \mathbf{y}$ implies $\mathbf{x} = \mathbf{x}'$ for any $\mathbf{x}, \mathbf{x}', \mathbf{y} \in V$.

If $\mathbf{x} + \mathbf{y} = \mathbf{x}' + \mathbf{y}$ then $(\mathbf{x} + \mathbf{y}) + (-\mathbf{y}) = (\mathbf{x}' + \mathbf{y}) + (-\mathbf{y})$. By associativity, $(\mathbf{x} + \mathbf{y}) + (-\mathbf{y}) = \mathbf{x} + (\mathbf{y} + (-\mathbf{y})) = \mathbf{x} + \mathbf{0} = \mathbf{x}$ and $(\mathbf{x}' + \mathbf{y}) + (-\mathbf{y}) = \mathbf{x}' + (\mathbf{y} + (-\mathbf{y})) = \mathbf{x}' + \mathbf{0} = \mathbf{x}'$. Hence $\mathbf{x} = \mathbf{x}'$.

• $0\mathbf{x} = \mathbf{0}$ for any $\mathbf{x} \in V$.

Indeed, $0\mathbf{x} + \mathbf{x} = 0\mathbf{x} + 1\mathbf{x} = (0+1)\mathbf{x} = 1\mathbf{x} = \mathbf{x} = \mathbf{0} + \mathbf{x}$. By the cancellation law, $0\mathbf{x} = \mathbf{0}$.

• $(-1)\mathbf{x} = -\mathbf{x}$ for any $\mathbf{x} \in V$.

Indeed, $\mathbf{x} + (-1)\mathbf{x} = (-1)\mathbf{x} + \mathbf{x} = (-1)\mathbf{x} + 1\mathbf{x} = (-1+1)\mathbf{x} = 0\mathbf{x} = \mathbf{0}$.

Counterexample: dumb scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$rocdot \mathbf{x} = \mathbf{0}$$
 for any $\mathbf{x} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5.
$$r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y}$$
 \iff $\mathbf{0} = \mathbf{0} + \mathbf{0}$
A6. $(r+s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x}$ \iff $\mathbf{0} = \mathbf{0} + \mathbf{0}$
A7. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x})$ \iff $\mathbf{0} = \mathbf{0}$
A8. $1 \odot \mathbf{x} = \mathbf{x}$ \iff $\mathbf{0} = \mathbf{x}$

A8 is the only property that fails. As a consequence, property A8 does not follow from properties A1–A7.

Counterexample: lazy scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$rocup rocup \mathbf{x} = \mathbf{x}$$
 for any $\mathbf{x} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5.
$$r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y} \iff \mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}$$

A6. $(r+s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x} \iff \mathbf{x} = \mathbf{x} + \mathbf{x}$
A7. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x}) \iff \mathbf{x} = \mathbf{x}$
A8. $1 \odot \mathbf{x} = \mathbf{x}$

The only property that fails is A6.

Weird example

Consider the set $V = \mathbb{R}_+$ of positive numbers with a nonstandard addition and scalar multiplication:

A1.
$$x \oplus y = y \oplus x \iff xy = yx$$

A2.
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
 \iff $(xy)z = x(yz)$

A3.
$$x \oplus \zeta = \zeta \oplus x = x \iff x\zeta = \zeta x = x \text{ (holds for } \zeta = 1\text{)}$$

A4.
$$x \oplus \eta = \eta \oplus x = 1 \iff x\eta = \eta x = 1 \text{ (holds for } \eta = x^{-1}\text{)}$$

A5.
$$r \odot (x \oplus y) = (r \odot x) \oplus (r \odot y) \iff (xy)^r = x^r y^r$$

A6.
$$(r+s) \odot x = (r \odot x) \oplus (s \odot x) \iff x^{r+s} = x^r x^s$$

A7.
$$(rs) \odot x = r \odot (s \odot x) \iff x^{rs} = (x^s)^r$$

A8.
$$1 \odot x = x \iff x^1 = x$$

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f: \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f: \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
 - \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_k x^k$
 - \mathcal{P}_n : polynomials of degree less than n

 \mathcal{P}_n is a subspace of \mathcal{P} .

Subspaces of vector spaces

Counterexamples.

- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- P_n^* : polynomials of degree n (n > 0)

 P_n^* is not a subspace of \mathcal{P} .

 $-x^n + (x^n + 1) = 1 \notin P_n^* \implies P_n^*$ is not a vector space (addition is not well defined).

- ullet R with the standard linear operations
- ullet \mathbb{R}_+ with the operations \oplus and \odot

 \mathbb{R}_+ is not a subspace of \mathbb{R} since the linear operations do not agree.

If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\mathbf{x}, \mathbf{y} \in S \implies \mathbf{x} + \mathbf{y} \in S,$$

 $\mathbf{x} \in S \implies r\mathbf{x} \in S \text{ for all } r \in \mathbb{R}.$

Proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V.

Example. $V = \mathbb{R}^2$.

• The line x - y = 0 is a subspace of \mathbb{R}^2 .

The line consists of all vectors of the form (t,t), $t \in \mathbb{R}$. $(t,t)+(s,s)=(t+s,t+s) \implies$ closed under addition $r(t,t)=(rt,rt) \implies$ closed under scaling

• The parabola $y = x^2$ is not a subspace of \mathbb{R}^2 .

It is enough to find one explicit counterexample.

Counterexample 1: (1,1) + (-1,1) = (0,2).

(1,1) and (-1,1) lie on the parabola while (0,2) does not \implies not closed under addition

Counterexample 2: 2(1,1) = (2,2).

(1,1) lies on the parabola while (2,2) does not \implies not closed under scaling

Example. $V = \mathbb{R}^3$.

- The plane z = 0 is a subspace of \mathbb{R}^3 .
- The plane z = 1 is not a subspace of \mathbb{R}^3 .
- The line t(1,1,0), $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 and a subspace of the plane z=0.
- The line (1,1,1)+t(1,-1,0), $t\in\mathbb{R}$ is not a subspace of \mathbb{R}^3 as it lies in the plane x+y+z=3, which does not contain $\mathbf{0}$
- In general, a straight line or a plane in \mathbb{R}^3 is a subspace if and only if it passes through the origin.