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Subspaces.



Linear operations on vectors

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be
n-dimensional vectors, and r ∈ R be a scalar.

Vector sum: x+ y = (x1 + y1, x2 + y2, . . . , xn + yn)

Scalar multiple: rx = (rx1, rx2, . . . , rxn)

Zero vector: 0 = (0, 0, . . . , 0)

Negative of a vector: −y = (−y1,−y2, . . . ,−yn)

Vector difference:

x− y = x+ (−y) = (x1 − y1, x2 − y2, . . . , xn − yn)



Properties of linear operations

x+ y = y + x

(x+ y) + z = x+ (y + z)

x+ 0 = 0+ x = x

x+ (−x) = (−x) + x = 0

r(x+ y) = rx+ ry

(r + s)x = rx+ sx

(rs)x = r(sx)

1x = x

0x = 0

(−1)x = −x



Linear operations on matrices

Let A = (aij) and B = (bij) be m×n matrices,
and r ∈ R be a scalar.

Matrix sum: A+ B = (aij + bij)1≤i≤m, 1≤j≤n

Scalar multiple: rA = (raij)1≤i≤m, 1≤j≤n

Zero matrix O: all entries are zeros

Negative of a matrix: −A = (−aij)1≤i≤m, 1≤j≤n

Matrix difference: A− B = (aij − bij)1≤i≤m, 1≤j≤n

As far as the linear operations are concerned,
the m×n matrices have the same properties as
mn-dimensional vectors.



Vector space: informal description

Vector space = linear space = a set V of objects

(called vectors) that can be added and scaled.

That is, for any u, v ∈ V and r ∈ R expressions

u+ v and ru

should make sense.

Certain restrictions apply. For instance,
u+ v = v + u,

2u+ 3u = 5u.

That is, addition and scalar multiplication in V

should be like those of n-dimensional vectors.



Vector space: definition

Vector space is a set V equipped with two
operations α : V × V → V and µ : R× V → V

that have certain properties (listed below).

The operation α is called addition. For any
u, v ∈ V , the element α(u, v) is denoted u+ v.

The operation µ is called scalar multiplication. For

any r ∈ R and u ∈ V , the element µ(r , u) is
denoted ru.



Properties of addition and scalar multiplication

(brief)

A1. x+ y = y + x

A2. (x+ y) + z = x+ (y+ z)

A3. x+ 0 = 0+ x = x

A4. x+ (−x) = (−x) + x = 0

A5. r(x+ y) = rx+ ry

A6. (r + s)x = rx+ sx

A7. (rs)x = r(sx)

A8. 1x = x



Properties of addition and scalar multiplication (detailed)

A1. x+ y = y + x for all x, y ∈ V .

A2. (x+ y) + z = x+ (y + z) for all x, y, z ∈ V .

A3. There exists an element of V , called the zero

vector and denoted 0, such that x+ 0 = 0+ x = x
for all x ∈ V .

A4. For any x ∈ V there exists an element of V ,
denoted −x, such that x+ (−x) = (−x) + x = 0.

A5. r(x+ y) = rx+ ry for all r ∈ R and x, y ∈ V .

A6. (r + s)x = rx+ sx for all r , s ∈ R and x ∈ V .

A7. (rs)x = r(sx) for all r , s ∈ R and x ∈ V .

A8. 1x = x for all x ∈ V .



• Associativity of addition implies that a multiple
sum u1 + u2 + · · ·+ uk is well defined for any

u1, u2, . . . , uk ∈ V .

• Subtraction in V is defined as follows:
x− y = x+ (−y).

• Addition and scalar multiplication are called

linear operations.

Given u1, u2, . . . , uk ∈ V and r1, r2, . . . , rk ∈ R,

r1u1 + r2u2 + · · ·+ rkuk

is called a linear combination of u1, u2, . . . , uk .



Examples of vector spaces

In most examples, addition and scalar multiplication
are natural operations so that properties A1–A8 are

easy to verify.

• R
n: n-dimensional coordinate vectors

• Mm,n(R): m×n matrices with real entries

• R
∞: infinite sequences (x1, x2, . . . ), xi ∈ R

For any x = (x1, x2, . . . ), y = (y1, y2, . . . ) ∈ R
∞ and r ∈ R

let x+ y = (x1 + y1, x2 + y2, . . . ), rx = (rx1, rx2, . . . ).
Then 0 = (0, 0, . . . ) and −x = (−x1,−x2, . . . ).

• {0}: the trivial vector space
0+ 0 = 0, r0 = 0, −0 = 0.



Functional vector spaces

• F (R): the set of all functions f : R → R

Given functions f , g ∈ F (R) and a scalar r ∈ R, let
(f + g)(x) = f (x) + g(x) and (rf )(x) = rf (x) for all x ∈ R.
Zero vector: o(x) = 0. Negative: (−f )(x) = −f (x).

• C (R): all continuous functions f : R → R

Linear operations are inherited from F (R). We only need to
check that f , g ∈ C (R) =⇒ f+g , rf ∈ C (R), the zero
function is continuous, and f ∈ C (R) =⇒ −f ∈ C (R).

• C 1(R): all continuously differentiable functions

f : R → R

• C∞(R): all smooth functions f : R → R

• P : all polynomials p(x) = a0 + a1x + · · ·+ anx
n



Some general observations

• The zero vector is unique.

Suppose z1 and z2 are zero vectors. Then z1 + z2 = z2 since
z1 is a zero vector and z1 + z2 = z1 since z2 is a zero vector.
Hence z1 = z2.

• For any x ∈ V , the negative −x is unique.

Suppose y and y′ are both negatives of x. Let us compute the
sum y′ + x+ y in two ways:

(y′ + x) + y = 0+ y = y,

y′ + (x+ y) = y′ + 0 = y′.

By associativity of the vector addition, y = y′.



Some general observations

• (cancellation law) x+ y = x′ + y implies x = x′

for any x, x′, y ∈ V .

If x+ y = x′ + y then (x+ y) + (−y) = (x′ + y) + (−y). By
associativity, (x+ y) + (−y) = x+ (y + (−y)) = x+ 0 = x
and (x′ + y) + (−y) = x′ + (y + (−y)) = x′ + 0 = x′. Hence
x = x′.

• 0x = 0 for any x ∈ V .

Indeed, 0x+ x = 0x+ 1x = (0 + 1)x = 1x = x = 0+ x.
By the cancellation law, 0x = 0.

• (−1)x = −x for any x ∈ V .

Indeed, x+ (−1)x = (−1)x+ x = (−1)x+ 1x = (−1 + 1)x
= 0x = 0.



Counterexample: dumb scaling

Consider the set V = R
n with the standard

addition and a nonstandard scalar multiplication:

r ⊙ x = 0 for any x ∈ R
n and r ∈ R.

Properties A1–A4 hold because they do not involve

scalar multiplication.

A5. r ⊙ (x+ y) = r ⊙ x+ r ⊙ y ⇐⇒ 0 = 0+ 0
A6. (r + s)⊙ x = r ⊙ x+ s ⊙ x ⇐⇒ 0 = 0+ 0

A7. (rs)⊙ x = r ⊙ (s ⊙ x) ⇐⇒ 0 = 0
A8. 1⊙ x = x ⇐⇒ 0 = x

A8 is the only property that fails. As a consequence,
property A8 does not follow from properties A1–A7.



Counterexample: lazy scaling

Consider the set V = R
n with the standard

addition and a nonstandard scalar multiplication:

r ⊙ x = x for any x ∈ R
n and r ∈ R.

Properties A1–A4 hold because they do not involve
scalar multiplication.

A5. r ⊙ (x+ y) = r ⊙ x+ r ⊙ y ⇐⇒ x+ y = x+ y
A6. (r + s)⊙ x = r ⊙ x+ s ⊙ x ⇐⇒ x = x+ x

A7. (rs)⊙ x = r ⊙ (s ⊙ x) ⇐⇒ x = x
A8. 1⊙ x = x ⇐⇒ x = x

The only property that fails is A6.



Weird example

Consider the set V = R+ of positive numbers with a
nonstandard addition and scalar multiplication:

x ⊕ y = xy for any x , y ∈ R+.

r ⊙ x = x r for any x ∈ R+ and r ∈ R.

A1. x ⊕ y = y ⊕ x ⇐⇒ xy = yx

A2. (x ⊕ y )⊕ z = x ⊕ (y ⊕ z) ⇐⇒ (xy )z = x(yz)

A3. x ⊕ ζ = ζ ⊕ x = x ⇐⇒ xζ = ζx = x (holds for ζ = 1)

A4. x ⊕ η = η ⊕ x = 1 ⇐⇒ xη= ηx =1 (holds for η= x−1)

A5. r ⊙ (x ⊕ y ) = (r ⊙ x)⊕ (r ⊙ y ) ⇐⇒ (xy )r = x ry r

A6. (r + s)⊙ x = (r ⊙ x)⊕ (s ⊙ x) ⇐⇒ x r+s = x rx s

A7. (rs)⊙ x = r ⊙ (s ⊙ x) ⇐⇒ x rs = (x s)r

A8. 1⊙ x = x ⇐⇒ x1 = x



Subspaces of vector spaces

Definition. A vector space V0 is a subspace of a

vector space V if V0 ⊂ V and the linear operations
on V0 agree with the linear operations on V .

Examples.

• F (R): all functions f : R → R

• C (R): all continuous functions f : R → R

C (R) is a subspace of F (R).

• P : polynomials p(x) = a0 + a1x + · · ·+ akx
k

• Pn: polynomials of degree less than n

Pn is a subspace of P .



Subspaces of vector spaces

Counterexamples.

• P : polynomials p(x) = a0 + a1x + · · ·+ anx
n

• P∗
n : polynomials of degree n (n > 0)

P∗
n is not a subspace of P .

−xn + (xn + 1) = 1 /∈ P∗

n
=⇒ P∗

n
is not a vector space

(addition is not well defined).

• R with the standard linear operations

• R+ with the operations ⊕ and ⊙

R+ is not a subspace of R since the linear
operations do not agree.



If S is a subset of a vector space V then S inherits
from V addition and scalar multiplication. However

S need not be closed under these operations.

Proposition A subset S of a vector space V is a
subspace of V if and only if S is nonempty and

closed under linear operations, i.e.,

x, y ∈ S =⇒ x+ y ∈ S ,

x ∈ S =⇒ rx ∈ S for all r ∈ R.

Proof: “only if” is obvious.
“if”: properties like associative, commutative, or distributive
law hold for S because they hold for V . We only need to
verify properties A3 and A4. Take any x ∈ S (note that S is
nonempty). Then 0 = 0x ∈ S . Also, −x = (−1)x ∈ S .
Thus 0 and −x in S are the same as in V .



Example. V = R
2.

• The line x − y = 0 is a subspace of R2.

The line consists of all vectors of the form (t, t), t ∈ R.

(t, t) + (s, s) = (t + s, t + s) =⇒ closed under addition
r(t, t) = (rt, rt) =⇒ closed under scaling

• The parabola y = x2 is not a subspace of R2.

It is enough to find one explicit counterexample.

Counterexample 1: (1, 1) + (−1, 1) = (0, 2).

(1, 1) and (−1, 1) lie on the parabola while (0, 2) does not
=⇒ not closed under addition

Counterexample 2: 2(1, 1) = (2, 2).

(1, 1) lies on the parabola while (2, 2) does not
=⇒ not closed under scaling



Example. V = R
3.

• The plane z = 0 is a subspace of R3.

• The plane z = 1 is not a subspace of R3.

• The line t(1, 1, 0), t ∈ R is a subspace of R3

and a subspace of the plane z = 0.

• The line (1, 1, 1) + t(1,−1, 0), t ∈ R is not a

subspace of R3 as it lies in the plane x + y + z = 3,
which does not contain 0.

• In general, a straight line or a plane in R
3 is a

subspace if and only if it passes through the origin.


