MATH 311 Topics in Applied Mathematics I Lecture 9: Linear independence. Basis of a vector space.

Spanning set

Let *S* be a subset of a vector space *V*. *Definition.* The **span** of the set *S* is the smallest subspace $W \subset V$ that contains *S*. If *S* is not empty then W = Span(S) consists of all linear combinations $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$ such that $\mathbf{v}_1, \ldots, \mathbf{v}_k \in S$ and $r_1, \ldots, r_k \in \mathbb{R}$.

We say that the set S spans the subspace W or that S is a spanning set for W.

Remarks. • If S_1 is a spanning set for a vector space V and $S_1 \subset S_2 \subset V$, then S_2 is also a spanning set for V.

• If $\mathbf{v}_0, \mathbf{v}_1, \ldots, \mathbf{v}_k$ is a spanning set for V and \mathbf{v}_0 is a linear combination of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is also a spanning set for V.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0},$$

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=\mathbf{0}.$$

A set $S \subset V$ is **linearly dependent** if one can find some distinct linearly dependent vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in *S*. Otherwise *S* is **linearly independent**.

Examples of linear independence

• Vectors
$$\mathbf{e}_{1} = (1, 0, 0)$$
, $\mathbf{e}_{2} = (0, 1, 0)$, and
 $\mathbf{e}_{3} = (0, 0, 1)$ in \mathbb{R}^{3} .
 $x\mathbf{e}_{1} + y\mathbf{e}_{2} + z\mathbf{e}_{3} = \mathbf{0} \implies (x, y, z) = \mathbf{0}$
 $\implies x = y = z = 0$
• Matrices $E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $E_{12} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,
 $E_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $E_{22} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
 $aE_{11} + bE_{12} + cE_{21} + dE_{22} = 0 \implies \begin{pmatrix} a & b \\ c & d \end{pmatrix} = 0$
 $\implies a = b = c = d = 0$

Examples of linear independence

• Polynomials
$$1, x, x^2, \dots, x^n$$
.
 $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0$ identically
 $\implies a_i = 0$ for $0 \le i \le n$

• The infinite set $\{1, x, x^2, \ldots, x^n, \ldots\}$.

• Polynomials $p_1(x) = 1$, $p_2(x) = x - 1$, and $p_3(x) = (x - 1)^2$.

 $\begin{aligned} a_1 p_1(x) + a_2 p_2(x) + a_3 p_3(x) &= a_1 + a_2(x-1) + a_3(x-1)^2 = \\ &= (a_1 - a_2 + a_3) + (a_2 - 2a_3)x + a_3x^2. \\ \text{Hence } a_1 p_1(x) + a_2 p_2(x) + a_3 p_3(x) &= 0 \quad \text{identically} \\ &\implies a_1 - a_2 + a_3 = a_2 - 2a_3 = a_3 = 0 \\ &\implies a_1 = a_2 = a_3 = 0 \end{aligned}$

Problem Let $\mathbf{v}_1 = (1, 2, 0)$, $\mathbf{v}_2 = (3, 1, 1)$, and $\mathbf{v}_3 = (4, -7, 3)$. Determine whether vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent.

We have to check if there exist $r_1, r_2, r_3 \in \mathbb{R}$ not all zero such that $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + r_3\mathbf{v}_3 = \mathbf{0}$.

This vector equation is equivalent to a system

$$\begin{cases} r_1 + 3r_2 + 4r_3 = 0 \\ 2r_1 + r_2 - 7r_3 = 0 \\ 0r_1 + r_2 + 3r_3 = 0 \end{cases} \begin{pmatrix} 1 & 3 & 4 & | & 0 \\ 2 & 1 & -7 & | & 0 \\ 0 & 1 & 3 & | & 0 \end{pmatrix}$$

The vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly dependent if and only if the coefficient matrix $A = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ is singular. We obtain that det A = 0 (it is singular). **Theorem** The following conditions are equivalent: (i) vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly dependent; (ii) one of vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a linear combination of the other k - 1 vectors.

Proof: (i)
$$\Longrightarrow$$
 (ii) Suppose that
 $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k = \mathbf{0}$,
where $r_i \neq 0$ for some $1 \leq i \leq k$. Then
 $\mathbf{v}_i = -\frac{r_1}{r_i}\mathbf{v}_1 - \cdots - \frac{r_{i-1}}{r_i}\mathbf{v}_{i-1} - \frac{r_{i+1}}{r_i}\mathbf{v}_{i+1} - \cdots - \frac{r_k}{r_i}\mathbf{v}_k$.
(ii) \Longrightarrow (i) Suppose that
 $\mathbf{v}_i = s_1\mathbf{v}_1 + \cdots + s_{i-1}\mathbf{v}_{i-1} + s_{i+1}\mathbf{v}_{i+1} + \cdots + s_k\mathbf{v}_k$
for some scalars s_j . Then
 $s_1\mathbf{v}_1 + \cdots + s_{i-1}\mathbf{v}_{i-1} - \mathbf{v}_i + s_{i+1}\mathbf{v}_{i+1} + \cdots + s_k\mathbf{v}_k = \mathbf{0}$

Problem. Let $A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$. Determine whether

matrices A, A^2 , and A^3 are linearly independent.

We have
$$A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$
, $A^2 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$, $A^3 = 0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

The task is to check if there exist $r_1, r_2, r_3 \in \mathbb{R}$ not all zero such that $r_1A + r_2A^2 + r_3A^3 = O$.

This matrix equation is equivalent to a system

$$\begin{pmatrix} -r_1 + 0r_2 + r_3 = 0 \\ r_1 - r_2 + 0r_3 = 0 \\ 0r_1 - r_2 + r_3 = 0 \end{pmatrix} \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The row echelon form of the augmented matrix shows there is a free variable. Hence the system has a nonzero solution so that the matrices are linearly dependent (one relation is $A + A^2 + A^3 = O$). **Problem.** Show that functions e^x , e^{2x} , and e^{3x} are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $ae^{x} + be^{2x} + ce^{3x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0. Differentiate this identity twice:

$$ae^{x} + be^{2x} + ce^{3x} = 0,$$

 $ae^{x} + 2be^{2x} + 3ce^{3x} = 0,$
 $ae^{x} + 4be^{2x} + 9ce^{3x} = 0.$

It follows that $A(x)\mathbf{v} = \mathbf{0}$, where

$$A(x) = \begin{pmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

$$\begin{aligned} A(x) &= \begin{pmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}. \\ \det A(x) &= e^{x} \begin{vmatrix} 1 & e^{2x} & e^{3x} \\ 1 & 2e^{2x} & 3e^{3x} \\ 1 & 4e^{2x} & 9e^{3x} \end{vmatrix} = e^{x}e^{2x} \begin{vmatrix} 1 & 1 & e^{3x} \\ 1 & 2 & 3e^{3x} \\ 1 & 4 & 9e^{3x} \end{vmatrix} \\ &= e^{x}e^{2x}e^{3x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 2 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 2 \\ 3 & 8 \end{vmatrix} = 2e^{6x} \neq 0. \end{aligned}$$

Since the matrix A(x) is invertible, we obtain $A(x)\mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0} \implies a = b = c = 0$

Wronskian

Let f_1, f_2, \ldots, f_n be smooth functions on an interval [a, b]. The **Wronskian** $W[f_1, f_2, \ldots, f_n]$ is a function on [a, b] defined by

$$W[f_1, f_2, \dots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}.$$

Theorem If $W[f_1, f_2, ..., f_n](x_0) \neq 0$ for some $x_0 \in [a, b]$ then the functions $f_1, f_2, ..., f_n$ are linearly independent in C[a, b].

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a **basis**.

Suppose that a set $S \subset V$ is a basis for V.

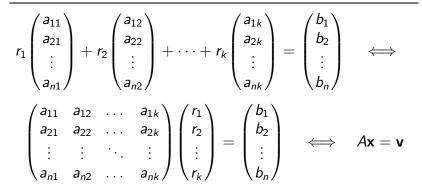
"Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$\mathbf{v}=r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k,$$

where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \dots + r_k \mathbf{v}_k = r'_1 \mathbf{v}_1 + r'_2 \mathbf{v}_2 + \dots + r'_k \mathbf{v}_k$$

$$\implies (r_1 - r'_1) \mathbf{v}_1 + (r_2 - r'_2) \mathbf{v}_2 + \dots + (r_k - r'_k) \mathbf{v}_k = \mathbf{0}$$

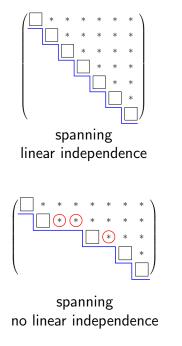

$$\implies r_1 - r'_1 = r_2 - r'_2 = \dots = r_k - r'_k = \mathbf{0}$$

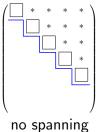
Examples. • Standard basis for
$$\mathbb{R}^n$$
:
 $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots, \mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$
Indeed, $(x_1, x_2, \dots, x_n) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$
• Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$
form a basis for $\mathcal{M}_{2,2}(\mathbb{R}).$
($\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
• Polynomials $1, x, x^2, \dots, x^{n-1}$ form a basis for $\mathcal{P}_n = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} : a_i \in \mathbb{R}\}.$

• The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.

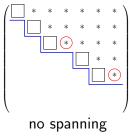
Let $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $r_1, r_2, \dots, r_k \in \mathbb{R}$. The vector equation $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_k\mathbf{v}_k = \mathbf{v}$ is equivalent to the matrix equation $A\mathbf{x} = \mathbf{v}$, where

$$A = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k), \qquad \mathbf{x} = \begin{pmatrix} r_1 \\ \vdots \\ r_k \end{pmatrix}$$


Let $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $r_1, r_2, \dots, r_k \in \mathbb{R}$. The vector equation $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_k\mathbf{v}_k = \mathbf{v}$ is equivalent to the matrix equation $A\mathbf{x} = \mathbf{v}$, where


$$A = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k), \qquad \mathbf{x} = \begin{pmatrix} r_1 \\ \vdots \\ r_k \end{pmatrix}$$

That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are consecutive columns of A.


• Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ span \mathbb{R}^n if the row echelon form of A has no zero rows.

• Vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).

linear independence

no linear independence

Bases for \mathbb{R}^n

Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ be vectors in \mathbb{R}^n .

Theorem 1 If k < n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ do not span \mathbb{R}^n .

Theorem 2 If k > n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are linearly dependent.

Theorem 3 If k = n then the following conditions are equivalent:

(i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n ; (ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set for \mathbb{R}^n ; (iii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set. *Example.* Consider vectors $\mathbf{v}_1 = (1, -1, 1)$, $\mathbf{v}_2 = (1, 0, 0)$, $\mathbf{v}_3 = (1, 1, 1)$, and $\mathbf{v}_4 = (1, 2, 4)$ in \mathbb{R}^3 .

Vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent (as they are not parallel), but they do not span \mathbb{R}^3 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent since

Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span \mathbb{R}^3 (because $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ already span \mathbb{R}^3), but they are linearly dependent.

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

• $\mathcal{M}_{2,2}(\mathbb{R})$: the space of 2×2 matrices dim $\mathcal{M}_{2,2}(\mathbb{R}) = 4$

• $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices dim $\mathcal{M}_{m,n}(\mathbb{R}) = mn$

• \mathcal{P}_n : polynomials of degree less than $n \dim \mathcal{P}_n = n$

• $\mathcal{P}:$ the space of all polynomials $\dim \mathcal{P} = \infty$

• $\{ {f 0} \}$: the trivial vector space dim $\{ {f 0} \} = 0$