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Lecture 12:

Basis and coordinates.

Change of basis.

Linear transformations.



Basis and dimension

Definition. Let V be a vector space. A linearly

independent spanning set for V is called a basis.

Theorem Any vector space V has a basis. If V
has a finite basis, then all bases for V are finite and

have the same number of elements (called the
dimension of V ).

Example. Vectors e1 = (1, 0, 0, . . . , 0, 0),

e2 = (0, 1, 0, . . . , 0, 0),. . . , en = (0, 0, 0, . . . , 0, 1)
form a basis for Rn (called standard) since

(x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen.



Basis and coordinates

If {v1, v2, . . . , vn} is a basis for a vector space V ,
then any vector v ∈ V has a unique representation

v = x1v1 + x2v2 + · · ·+ xnvn,

where xi ∈ R. The coefficients x1, x2, . . . , xn are
called the coordinates of v with respect to the

ordered basis v1, v2, . . . , vn.

The mapping

vector v 7→ its coordinates (x1, x2, . . . , xn)

is a one-to-one correspondence between V and R
n.

This correspondence respects linear operations in V

and in R
n.



Examples. • Coordinates of a vector
v = (x1, x2, . . . , xn) ∈ R

n relative to the standard

basis e1 = (1, 0, . . . , 0, 0), e2 = (0, 1, . . . , 0, 0),. . . ,
en = (0, 0, . . . , 0, 1) are (x1, x2, . . . , xn).

• Coordinates of a matrix
(

a b

c d

)

∈ M2,2(R)

relative to the basis
(

1 0
0 0

)

,

(

0 0
1 0

)

,

(

0 1
0 0

)

,
(

0 0
0 1

)

are (a, c , b, d).

• Coordinates of a polynomial
p(x) = a0 + a1x + · · ·+ an−1x

n−1 ∈ Pn relative to

the basis 1, x , x2, . . . , xn−1 are (a0, a1, . . . , an−1).



Weird vector space

Consider the set V = R+ of positive numbers with a
nonstandard addition and scalar multiplication:

x ⊕ y = xy for any x , y ∈ R+.

r ⊙ x = x r for any x ∈ R+ and r ∈ R.

This is an example of a vector space.

The zero vector in V is the number 1. To build a basis for V ,
we can begin with any number v ∈ V different from 1. Let’s
take v = 2. The span Span(2) consists of all numbers of the
form r ⊙ 2 = 2r , r ∈ R. It is the entire space V . Hence {2}
is a basis for V so that dimV = 1.

The coordinate mapping f : V → R associated to this basis is
given by f (2r)= r for all r ∈ R. Equivalently, f (x) = log2 x ,
x ∈ V . Notice that log2(x ⊕ y ) = log2 x + log2 y and
log2(r ⊙ x) = r log2 x .



Vectors u1=(3, 1) and u2=(2, 1) form a basis for R2.

Problem 1. Find coordinates of the vector
v = (7, 4) with respect to the basis u1, u2.

The desired coordinates x , y satisfy

v = xu1+yu2 ⇐⇒

{

3x + 2y = 7

x + y = 4
⇐⇒

{

x = −1

y = 5

Problem 2. Find the vector w whose coordinates

with respect to the basis u1, u2 are (7, 4).

w = 7u1 + 4u2 = 7(3, 1) + 4(2, 1) = (29, 11)



Change of coordinates

Given a vector v ∈ R
2, let (x , y) be its standard

coordinates, i.e., coordinates with respect to the
standard basis e1 = (1, 0), e2 = (0, 1), and let

(x ′, y ′) be its coordinates with respect to the basis
u1 = (3, 1), u2 = (2, 1).

Problem. Find a relation between (x , y) and (x ′, y ′).

By definition, v = xe1 + ye2 = x ′u1 + y ′u2.
In standard coordinates,

(

x

y

)

= x ′

(

3
1

)

+ y ′

(

2
1

)

=

(

3 2
1 1

)(

x ′

y ′

)

=⇒

(

x ′

y ′

)

=

(

3 2
1 1

)

−1(

x

y

)

=

(

1 −2
−1 3

)(

x

y

)



Change of coordinates in R
n

The usual (standard) coordinates of a vector
v = (x1, x2, . . . , xn) ∈ R

n are coordinates relative to the
standard basis e1, e2, . . . , en. Let u1, u2, . . . , un be another
basis for Rn and (x ′

1, x
′

2, . . . , x
′

n) be the coordinates of the
same vector v with respect to this basis. Then









x1
x2
...
xn









=









u11 u12 . . . u1n
u21 u22 . . . u2n
...

...
. . .

...
un1 un2 . . . unn

















x ′

1

x ′

2

...
x ′

n









,

where the matrix U = (uij) does not depend on the vector v.
Namely, columns of U are coordinates of vectors
u1, u2, . . . , un with respect to the standard basis. U is called
the transition matrix from the basis u1, u2, . . . , un to the
standard basis e1, e2, . . . , en. The inverse matrix U−1 is
called the transition matrix from e1, . . . , en to u1, . . . , un.



Problem. Find coordinates of the vector

x = (1, 2, 3) with respect to the basis
u1 = (1, 1, 0), u2 = (0, 1, 1), u3 = (1, 1, 1).

The nonstandard coordinates (x ′, y ′, z ′) of x satisfy




x ′

y ′

z ′



 = U





1
2
3



,

where U is the transition matrix from the standard basis
e1, e2, e3 to the basis u1, u2, u3.
The transition matrix from u1, u2, u3 to e1, e2, e3 is

U0 = (u1, u2, u3) =





1 0 1
1 1 1
0 1 1



.

The transition matrix from e1, e2, e3 to u1, u2, u3 is the
inverse matrix: U = U−1

0 .



The inverse matrix can be computed using row reduction.

(U0 | I ) =





1 0 1 1 0 0
1 1 1 0 1 0
0 1 1 0 0 1





→





1 0 1 1 0 0
0 1 0 −1 1 0
0 1 1 0 0 1



 →





1 0 1 1 0 0
0 1 0 −1 1 0
0 0 1 1 −1 1





→





1 0 0 0 1 −1
0 1 0 −1 1 0
0 0 1 1 −1 1



 = (I |U−1

0 )

Thus




x ′

y ′

z ′



 =





0 1 −1
−1 1 0
1 −1 1









1
2
3



 =





−1
1
2



.



Change of coordinates: general case

Let V be a vector space of dimension n.
Let v1, v2, . . . , vn be a basis for V and g1 : V → R

n be the
coordinate mapping corresponding to this basis.
Let u1, u2, . . . , un be another basis for V and g2 : V → R

n

be the coordinate mapping corresponding to this basis.

V
g1

ւ
g2

ց
R

n −→ R
n

The composition g2◦g
−1

1 is a transformation of Rn.
It has the form x 7→ Ux, where U is an n×n matrix.

U is called the transition matrix from v1, v2 . . . , vn to
u1, u2 . . . , un. Columns of U are coordinates of the vectors
v1, v2, . . . , vn with respect to the basis u1, u2, . . . , un.



Problem. Find the transition matrix from the
basis p1(x) = 1, p2(x) = x + 1, p3(x) = (x + 1)2

to the basis q1(x) = 1, q2(x) = x , q3(x) = x2 for

the vector space P3.

We have to find coordinates of the polynomials
p1, p2, p3 with respect to the basis q1, q2, q3:

p1(x) = 1 = q1(x),
p2(x) = x + 1 = q1(x) + q2(x),

p3(x) = (x+1)2 = x2+2x+1 = q1(x)+2q2(x)+q3(x).

Hence the transition matrix is





1 1 1

0 1 2
0 0 1



.



Thus the polynomial identity

a1 + a2(x + 1) + a3(x + 1)2 = b1 + b2x + b3x
2

is equivalent to the relation




b1
b2
b3



 =





1 1 1
0 1 2

0 0 1









a1
a2
a3



.



Problem. Find the transition matrix from the
basis v1 = (1, 2, 3), v2 = (1, 0, 1), v3 = (1, 2, 1) to

the basis u1 = (1, 1, 0), u2 = (0, 1, 1), u3 = (1, 1, 1).

It is convenient to make a two-step transition:
first from v1, v2, v3 to e1, e2, e3, and then from

e1, e2, e3 to u1, u2, u3.

Let U1 be the transition matrix from v1, v2, v3 to
e1, e2, e3 and U2 be the transition matrix from

u1, u2, u3 to e1, e2, e3:

U1 =





1 1 1
2 0 2

3 1 1



, U2 =





1 0 1
1 1 1

0 1 1



.



Basis v1, v2, v3 =⇒ coordinates x

Basis e1, e2, e3 =⇒ coordinates U1x

Basis u1, u2, u3 =⇒ coordinates U−1

2
(U1x)=(U−1

2
U1)x

Thus the transition matrix from v1, v2, v3 to
u1, u2, u3 is U−1

2
U1.

U−1

2
U1 =





1 0 1
1 1 1

0 1 1





−1



1 1 1
2 0 2

3 1 1





=





0 1 −1

−1 1 0
1 −1 1









1 1 1

2 0 2
3 1 1



 =





−1 −1 1

1 −1 1
2 2 0



.



Linear mapping = linear transformation = linear function

Definition. Given vector spaces V1 and V2, a

mapping L : V1 → V2 is linear if

L(x+ y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.

A linear mapping ℓ : V → R is called a linear

functional on V .

If V1 = V2 (or if both V1 and V2 are functional

spaces) then a linear mapping L : V1 → V2 is called
a linear operator.



Linear mapping = linear transformation = linear function

Definition. Given vector spaces V1 and V2, a
mapping L : V1 → V2 is linear if

L(x+ y) = L(x) + L(y),

L(rx) = rL(x)

for any x, y ∈ V1 and r ∈ R.

Remark. A function f : R → R given by

f (x) = ax + b is a linear transformation of the
vector space R if and only if b = 0.



Basic properties of linear transformations

Let L : V1 → V2 be a linear mapping.

• L(r1v1 + · · ·+ rkvk) = r1L(v1) + · · ·+ rkL(vk)
for all k ≥ 1, v1, . . . , vk ∈ V1, and r1, . . . , rk ∈ R.

L(r1v1 + r2v2) = L(r1v1) + L(r2v2) = r1L(v1) + r2L(v2),

L(r1v1 + r2v2 + r3v3) = L(r1v1 + r2v2) + L(r3v3) =
= r1L(v1) + r2L(v2) + r3L(v3), and so on.

• L(01) = 02, where 01 and 02 are zero vectors in
V1 and V2, respectively.

L(01) = L(001) = 0L(01) = 02.

• L(−v) = −L(v) for any v ∈ V1.

L(−v) = L((−1)v) = (−1)L(v) = −L(v).



Examples of linear mappings

• Scaling L : V → V , L(v) = sv, where s ∈ R.
L(x+ y) = s(x+ y) = sx+ sy = L(x) + L(y),
L(rx) = s(rx) = r(sx) = rL(x).

• Dot product with a fixed vector

ℓ : Rn → R, ℓ(v) = v · v0, where v0 ∈ R
n.

ℓ(x+ y) = (x+ y) · v0 = x · v0 + y · v0 = ℓ(x) + ℓ(y),
ℓ(rx) = (rx) · v0 = r(x · v0) = rℓ(x).

• Cross product with a fixed vector

L : R3 → R
3, L(v) = v × v0, where v0 ∈ R

3.

• Multiplication by a fixed matrix

L : Rn → R
m, L(v) = Av, where A is an m×n

matrix and all vectors are column vectors.


