MATH 311 Topics in Applied Mathematics I Lecture 13: Linear transformations (continued). General linear equations. Matrix representation of linear maps.

Linear transformation

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if $\begin{array}{c}
L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}), \\
\hline
L(r\mathbf{x}) = rL(\mathbf{x})
\end{array}$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Basic properties of linear mappings:

•
$$L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$$

for all $k \ge 1$, $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V_1$, and $r_1, \ldots, r_k \in \mathbb{R}$.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

•
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
 for any $\mathbf{v} \in V_1$.

Examples of linear mappings

• Scaling
$$L: V \rightarrow V$$
, $L(\mathbf{v}) = s\mathbf{v}$, where $s \in \mathbb{R}$.
 $L(\mathbf{x} + \mathbf{y}) = s(\mathbf{x} + \mathbf{y}) = s\mathbf{x} + s\mathbf{y} = L(\mathbf{x}) + L(\mathbf{y})$,
 $L(r\mathbf{x}) = s(r\mathbf{x}) = (sr)\mathbf{x} = (rs)\mathbf{x} = r(s\mathbf{x}) = rL(\mathbf{x})$.

• Dot product with a fixed vector

$$\ell : \mathbb{R}^n \to \mathbb{R}, \ \ell(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^n.$$

 $\ell(\mathbf{x} + \mathbf{y}) = (\mathbf{x} + \mathbf{y}) \cdot \mathbf{v}_0 = \mathbf{x} \cdot \mathbf{v}_0 + \mathbf{y} \cdot \mathbf{v}_0 = \ell(\mathbf{x}) + \ell(\mathbf{y}),$
 $\ell(r\mathbf{x}) = (r\mathbf{x}) \cdot \mathbf{v}_0 = r(\mathbf{x} \cdot \mathbf{v}_0) = r\ell(\mathbf{x}).$

• Cross product with a fixed vector
$$L: \mathbb{R}^3 \to \mathbb{R}^3, \ L(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^3.$$

• Multiplication by a fixed matrix $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{v}) = A\mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

Linear mappings of functional vector spaces

• Evaluation at a fixed point
$$\ell : F(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = f(a), \text{ where } a \in \mathbb{R}$$

• Multiplication by a fixed function $L: F(\mathbb{R}) \to F(\mathbb{R}), \ L(f) = gf, \text{ where } g \in F(\mathbb{R}).$

• Differentiation $D: C^1(\mathbb{R}) \to C(\mathbb{R}), D(f) = f'.$ D(f+g) = (f+g)' = f' + g' = D(f) + D(g),D(rf) = (rf)' = rf' = rD(f).

• Integration over a finite interval $\ell : C(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = \int_{a}^{b} f(x) \, dx$, where $a, b \in \mathbb{R}, \ a < b$.

More properties of linear mappings

• If a linear mapping $L: V \to W$ is invertible then the inverse mapping $L^{-1}: W \to V$ is also linear.

• If $L: V \to W$ and $M: W \to X$ are linear mappings then the composition $M \circ L: V \to X$ is also linear.

• If $L_1: V \to W$ and $L_2: V \to W$ are linear mappings then the sum $L_1 + L_2$ is also linear.

Linear differential operators

• Ordinary differential operator

$$L: C^\infty(\mathbb{R}) o C^\infty(\mathbb{R}), \quad L=g_0rac{d^2}{dx^2}+g_1rac{d}{dx}+g_2,$$

where g_0, g_1, g_2 are smooth functions on \mathbb{R} . That is, $L(f) = g_0 f'' + g_1 f' + g_2 f$.

• Laplace's operator $\Delta : C^{\infty}(\mathbb{R}^2) \to C^{\infty}(\mathbb{R}^2)$, $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

(a.k.a. the Laplacian; also denoted by ∇^2).

Linear integral operators

• Anti-derivative

$$L: C[a,b] \rightarrow C^1[a,b], \quad (Lf)(x) = \int_a^{\infty} f(y) \, dy.$$

• Hilbert-Schmidt operator

$$L: C[a, b] \to C[c, d], \quad (Lf)(x) = \int_{a}^{b} K(x, y)f(y) \, dy,$$

where $K \in C([c, d] \times [a, b]).$

• Laplace transform

 $\mathcal{L}: BC(0,\infty) \to C(0,\infty), \ (\mathcal{L}f)(x) = \int_0^\infty e^{-xy} f(y) \, dy.$

Examples. $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices.

•
$$\alpha : \mathcal{M}_{m,n}(\mathbb{R}) \to \mathcal{M}_{n,m}(\mathbb{R}), \quad \alpha(A) = A^T.$$

 $\alpha(A+B) = \alpha(A) + \alpha(B) \iff (A+B)^T = A^T + B^T.$
 $\alpha(rA) = r \alpha(A) \iff (rA)^T = rA^T.$
Hence α is linear.

•
$$\beta : \mathcal{M}_{2,2}(\mathbb{R}) \to \mathbb{R}, \quad \beta(A) = \det A.$$

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
Then $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

We have det(A) = det(B) = 0 while det(A + B) = 1. Hence $\beta(A + B) \neq \beta(A) + \beta(B)$ so that β is not linear.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear mapping.

Definition. The range (or image) of *L* is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of *L* is denoted L(V).

The **kernel** of *L*, denoted ker *L*, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) The range of L is a subspace of W. (ii) The kernel of L is a subspace of V.

Example.
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
, $L\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 1 & 2 & -1\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$

.

The kernel ker(L) is the nullspace of the matrix.

$$L\begin{pmatrix}x\\y\\z\end{pmatrix} = x\begin{pmatrix}1\\1\\1\end{pmatrix} + y\begin{pmatrix}0\\2\\0\end{pmatrix} + z\begin{pmatrix}-1\\-1\\-1\end{pmatrix}$$

The range $L(\mathbb{R}^3)$ is the column space of the matrix.

Example.
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
, $L\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 1 & 2 & -1\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$

The range of L is spanned by vectors (1, 1, 1), (0, 2, 0), and (-1, -1, -1). It follows that $L(\mathbb{R}^3)$ is the plane spanned by (1, 1, 1) and (0, 1, 0).

To find ker(L), we apply row reduction to the matrix:

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence $(x, y, z) \in \text{ker}(L)$ if x - z = y = 0. It follows that ker(L) is the line spanned by (1, 0, 1).

Example. L:
$$C^3(\mathbb{R}) \rightarrow C(\mathbb{R}), L(u) = u''' - 2u'' + u'.$$

According to the theory of differential equations, the initial value problem

$$\left\{ egin{array}{ll} u'''(x)-2u''(x)+u'(x)=g(x), & x\in \mathbb{R}, \\ u(a)=b_0, & u'(a)=b_1, & u''(a)=b_2 & \end{array}
ight.$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_0, b_1, b_2 \in \mathbb{R}$. It follows that $L(C^3(\mathbb{R})) = C(\mathbb{R})$.

Also, the initial data evaluation I(u) = (u(a), u'(a), u''(a)), which is a linear mapping $I : C^3(\mathbb{R}) \to \mathbb{R}^3$, becomes invertible when restricted to ker(L). Hence dim ker(L) = 3.

It is easy to check that $L(xe^x) = L(e^x) = L(1) = 0$. Besides, the functions xe^x , e^x , and 1 are linearly independent (use Wronskian). It follows that $ker(L) = Span(xe^x, e^x, 1)$.

General linear equation

Definition. A linear equation is an equation of the form

$$L(\mathbf{x}) = \mathbf{b}$$
,

where $L: V \to W$ is a linear mapping, **b** is a given vector from W, and **x** is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x}) = \mathbf{b}$ has a solution.

The kernel of *L* is the solution set of the **homogeneous** linear equation $L(\mathbf{x}) = \mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable and dim ker $L < \infty$, then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$$
,

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a basis for the kernel of L, and t_1, \ldots, t_k are arbitrary scalars.

Example.
$$\begin{cases} x + y + z = 4, \\ x + 2y = 3. \end{cases}$$

 $L : \mathbb{R}^3 \to \mathbb{R}^2, \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$
Linear equation: $L(\mathbf{x}) = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}.$
 $\begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 1 & 2 & 0 & | & 3 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & -1 & | & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 2 & | & 5 \\ 0 & 1 & -1 & | & -1 \end{pmatrix}$
 $\begin{cases} x + 2z = 5 \\ y - z = -1 \end{cases} \iff \begin{cases} x = 5 - 2z \\ y = -1 + z \end{cases}$
 $(x, y, z) = (5 - 2t, -1 + t, t) = (5, -1, 0) + t(-2, 1, 1).$

Example. $u'''(x) - 2u''(x) + u'(x) = e^{2x}$. Linear operator $L: C^3(\mathbb{R}) \to C(\mathbb{R})$, Lu = u''' - 2u'' + u'.

Linear equation: Lu = b, where $b(x) = e^{2x}$.

We already know that functions xe^x , e^x and 1 form a basis for the kernel of *L*. It remains to find a particular solution.

 $L(e^{2x}) = 8e^{2x} - 2(4e^{2x}) + 2e^{2x} = 2e^{2x}.$ Since *L* is a linear operator, $L(\frac{1}{2}e^{2x}) = e^{2x}.$ Particular solution: $u_0(x) = \frac{1}{2}e^{2x}.$

Thus the general solution is

l

$$u(x) = \frac{1}{2}e^{2x} + t_1xe^x + t_2e^x + t_3.$$

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ given by $L(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and $L(\mathbf{x}) \in \mathbb{R}^m$ are regarded as column vectors. This transformation is **linear**.

Example.
$$L\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1 & 0 & 2\\3 & 4 & 7\\0 & 5 & 8\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}$$
.

Let $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$ be the standard basis for \mathbb{R}^3 . We have that $L(\mathbf{e}_1) = (1, 3, 0)$, $L(\mathbf{e}_2) = (0, 4, 5)$, $L(\mathbf{e}_3) = (2, 7, 8)$. Thus $L(\mathbf{e}_1)$, $L(\mathbf{e}_2)$, $L(\mathbf{e}_3)$ are columns of the matrix.

Problem. Find a linear mapping $L : \mathbb{R}^3 \to \mathbb{R}^2$ such that $L(\mathbf{e}_1) = (1, 1)$, $L(\mathbf{e}_2) = (0, -2)$, $L(\mathbf{e}_3) = (3, 0)$, where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is the standard basis for \mathbb{R}^3 .

$$L(x, y, z) = L(x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3)$$

= $xL(\mathbf{e}_1) + yL(\mathbf{e}_2) + zL(\mathbf{e}_3)$
= $x(1, 1) + y(0, -2) + z(3, 0) = (x + 3z, x - 2y)$
 $L(x, y, z) = \begin{pmatrix} x + 3z \\ x - 2y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Columns of the matrix are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$.

Theorem Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

Change of coordinates (revisited)

Let V be a vector space.

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1 : V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be another basis for V and $g_2: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to itself. Hence it's represented as $\mathbf{x} \mapsto U\mathbf{x}$, where U is an $n \times n$ matrix. U is called the **transition matrix** from $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$. Columns of U are coordinates of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ with respect to the basis $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n$.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \to W$ be a linear map. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for V and $g_1: V \to \mathbb{R}^n$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ be a basis for W and $g_2 : W \to \mathbb{R}^m$ be the coordinate mapping corresponding to this basis.

The composition $g_2 \circ f \circ g_1^{-1}$ is a linear mapping of \mathbb{R}^n to \mathbb{R}^m . Hence it's represented as $\mathbf{x} \mapsto A\mathbf{x}$, where A is an $m \times n$ matrix. A is called the **matrix of** f with respect to bases $\mathbf{v}_1, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \ldots, \mathbf{w}_m$. Columns of A are coordinates of vectors $f(\mathbf{v}_1), \ldots, f(\mathbf{v}_n)$ with respect to the basis $\mathbf{w}_1, \ldots, \mathbf{w}_m$. *Examples.* • $D: \mathcal{P}_3 \to \mathcal{P}_2$, (Dp)(x) = p'(x). Let A_D be the matrix of D with respect to the bases $1, x, x^2$ and 1, x. Columns of A_D are coordinates of polynomials D1, Dx, Dx^2 w.r.t. the basis 1, x.

$$D1 = 0, Dx = 1, Dx^2 = 2x \implies A_D = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

• $L: \mathcal{P}_3 \to \mathcal{P}_3$, (Lp)(x) = p(x+1). Let A_L be the matrix of L w.r.t. the basis $1, x, x^2$. $L1 = 1, Lx = 1 + x, Lx^2 = (x+1)^2 = 1 + 2x + x^2$. $\implies A_L = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$