MATH 311 Topics in Applied Mathematics I Lecture 18: Orthogonal projection (continued). Least squares problems. Norm of a vector.

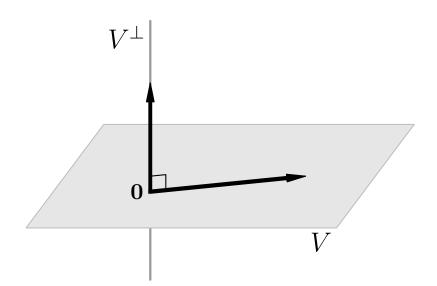
Orthogonal complement

Definition. Let $S \subset \mathbb{R}^n$. The **orthogonal complement** of *S*, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to *S*.

Theorem 1 (i) S^{\perp} is a subspace of \mathbb{R}^n . (ii) $(S^{\perp})^{\perp} = \operatorname{Span}(S)$.

Theorem 2 If V is a subspace of \mathbb{R}^n , then (i) $(V^{\perp})^{\perp} = V$, (ii) $V \cap V^{\perp} = \{\mathbf{0}\}$, (iii) dim $V + \dim V^{\perp} = n$.

Theorem 3 If V is the row space of a matrix, then V^{\perp} is the nullspace of the same matrix.



Orthogonal projection

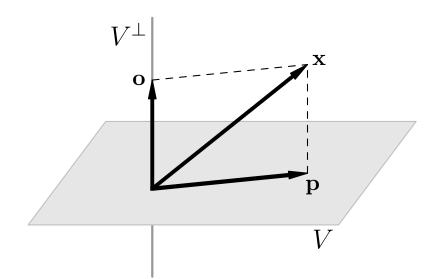
Theorem 1 Let V be a subspace of \mathbb{R}^n . Then any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

In the above expansion, \mathbf{p} is called the **orthogonal projection** of the vector \mathbf{x} onto the subspace V.

If V is a line spanned by a vector **y** then $\mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}$.

Theorem 2 $\|\mathbf{x} - \mathbf{v}\| > \|\mathbf{x} - \mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.

Thus $\|\mathbf{o}\| = \|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V} \|\mathbf{x} - \mathbf{v}\|$ is the **distance** from the vector \mathbf{x} to the subspace V.



Problem. Let Π be the plane spanned by vectors $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (0, 1, 1)$. (i) Find the orthogonal projection of the vector $\mathbf{x} = (4, 0, -1)$ onto the plane Π . (ii) Find the distance from \mathbf{x} to Π .

We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.

We have $\mathbf{p} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ for some $\alpha, \beta \in \mathbb{R}$. Then $\mathbf{o} = \mathbf{x} - \mathbf{p} = \mathbf{x} - \alpha \mathbf{v}_1 - \beta \mathbf{v}_2$.

$$\begin{cases} \mathbf{o} \cdot \mathbf{v}_1 = \mathbf{0} \\ \mathbf{o} \cdot \mathbf{v}_2 = \mathbf{0} \end{cases} \iff \begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

$$\mathbf{x}=(4,0,-1)$$
, $\mathbf{v}_1=(1,1,0)$, $\mathbf{v}_2=(0,1,1)$

$$\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$
$$\iff \begin{cases} 2\alpha + \beta = 4 \\ \alpha + 2\beta = -1 \end{cases} \iff \begin{cases} \alpha = 3 \\ \beta = -2 \end{cases}$$

$$\mathbf{p} = 3\mathbf{v}_1 - 2\mathbf{v}_2 = (3, 1, -2)$$

 $\mathbf{o} = \mathbf{x} - \mathbf{p} = (1, -1, 1)$
 $\|\mathbf{o}\| = \sqrt{3}$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_1 = (1, 1, 0)$ and $\mathbf{v}_2 = (0, 1, 1)$. (i) Find the orthogonal projection of the vector $\mathbf{x} = (4, 0, -1)$ onto the plane Π . (ii) Find the distance from \mathbf{x} to Π .

Alternative solution: We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.

Notice that **o** is the orthogonal projection of **x** onto the orthogonal complement Π^{\perp} . In the previous lecture, we found that Π^{\perp} is the line spanned by the vector $\mathbf{y} = (1, -1, 1)$. It follows that

$$\mathbf{o} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} = \frac{3}{3} (1, -1, 1) = (1, -1, 1).$$

Then $\mathbf{p} = \mathbf{x} - \mathbf{o} = (4, 0, -1) - (1, -1, 1) = (3, 1, -2)$ and $\|\mathbf{o}\| = \sqrt{3}$.

Overdetermined system of linear equations:

$$\begin{cases} x + 2y = 3 \\ 3x + 2y = 5 \\ x + y = 2.09 \end{cases} \iff \begin{cases} x + 2y = 3 \\ -4y = -4 \\ -y = -0.91 \end{cases}$$

No solution: inconsistent system

Assume that a solution (x_0, y_0) does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of (x_0, y_0) .

One approach is the **least squares fit**. Namely, we look for a pair (x, y) that minimizes the sum $(x + 2y - 3)^2 + (3x + 2y - 5)^2 + (x + y - 2.09)^2$.

Least squares solution

System of linear equations:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \dots \dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases} \iff A\mathbf{x} = \mathbf{b}$$
For any $\mathbf{x} \in \mathbb{R}^n$ define a **residual** $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$.
The **least squares solution x** to the system is the one that minimizes $||r(\mathbf{x})||$ (or, equivalently, $||r(\mathbf{x})||^2$).

$$\|r(\mathbf{x})\|^2 = \sum_{i=1}^m (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$.

Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$ if and only if it is a solution of the associated **normal system** $A^T A \mathbf{x} = A^T \mathbf{b}$.

Proof: $A\mathbf{x}$ is an arbitrary vector in R(A), the column space of A. Hence the length of $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is minimal if $A\mathbf{x}$ is the orthogonal projection of \mathbf{b} onto R(A). That is, if $r(\mathbf{x})$ is orthogonal to R(A).

We know that {row space}^{\perp} = {nullspace} for any matrix. In particular, $R(A)^{\perp} = N(A^{T})$, the nullspace of the transpose matrix of A. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if

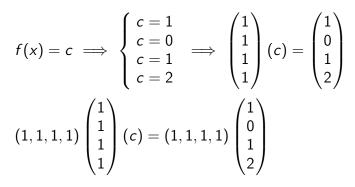
$$A^T r(\hat{\mathbf{x}}) = \mathbf{0} \iff A^T (\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \iff A^T A \hat{\mathbf{x}} = A^T \mathbf{b}.$$

Corollary The normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent.

Problem. Find the least squares solution to

$$\begin{cases} x + 2y = 3\\ 3x + 2y = 5\\ x + y = 2.09 \end{cases}$$
$$\begin{pmatrix} 1 & 2\\ 3 & 2\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 3\\ 5\\ 2.09 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 3 & 1\\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2\\ 3 & 2\\ 1 & 1 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1\\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3\\ 5\\ 2.09 \end{pmatrix}$$
$$\begin{pmatrix} 11 & 9\\ 9 & 9 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} 20.09\\ 18.09 \end{pmatrix} \iff \begin{cases} x = 1\\ y = 1.01 \end{cases}$$

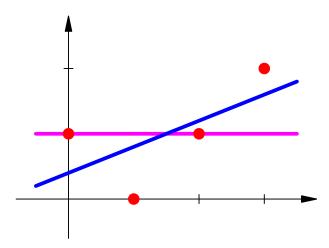
Problem. Find the constant function that is the least squares fit to the following data



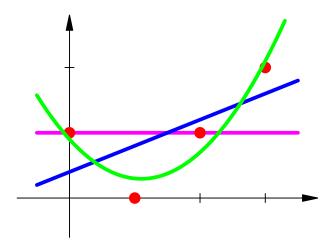
 $c = \frac{1}{4}(1+0+1+2) = 1$ (mean arithmetic value)

Problem. Find the linear polynomial that is the least squares fit to the following data

$$f(x) = c_1 + c_2 x \implies \begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \\ c_1 + 2c_2 = 1 \\ c_1 + 3c_2 = 2 \end{cases} \implies \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$
$$\begin{pmatrix} 4 & 6 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \iff \begin{cases} c_1 = 0.4 \\ c_2 = 0.4 \end{cases}$$



Problem. Find the quadratic polynomial that is the least squares fit to the following data



Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha: V \to \mathbb{R}$ is called a **norm** on V if it has the following properties:

(i) $\alpha(\mathbf{x}) \ge 0$, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity) (ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity) (iii) $\alpha(\mathbf{x} + \mathbf{y}) \le \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$. • $\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|)$.

Positivity and homogeneity are obvious. Let

$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $\mathbf{y} = (y_1, \dots, y_n)$. Then
 $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$.
 $|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$
 $\implies \max_j |x_j + y_j| \le \max_j |x_j| + \max_j |y_j|$
 $\implies \|\mathbf{x} + \mathbf{y}\|_{\infty} \le \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}$.

• $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|.$

Positivity and homogeneity are obvious. The triangle inequality: $|x_i + y_i| \le |x_i| + |y_i|$ $\implies \sum_j |x_j + y_j| \le \sum_j |x_j| + \sum_j |y_j|$ Examples. $V = \mathbb{R}^{n}$, $\mathbf{x} = (x_{1}, x_{2}, ..., x_{n}) \in \mathbb{R}^{n}$. • $\|\mathbf{x}\|_{p} = (|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p})^{1/p}$, p > 0. *Remark.* $\|\mathbf{x}\|_{2}$ = Euclidean length of \mathbf{x} .

Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \ge 1$.

Positivity and homogeneity are still obvious (and hold for any p > 0). The triangle inequality for $p \ge 1$ is known as the **Minkowski inequality**:

 $(|x_1 + y_1|^p + |x_2 + y_2|^p + \dots + |x_n + y_n|^p)^{1/p} \le$ $\le (|x_1|^p + \dots + |x_n|^p)^{1/p} + (|y_1|^p + \dots + |y_n|^p)^{1/p}.$

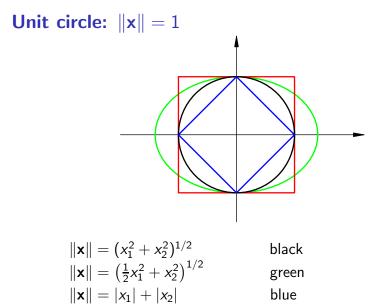
Normed vector space

Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $dist(\mathbf{x}, \mathbf{y}) = ||\mathbf{x} - \mathbf{y}||$.

Then we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $dist(\mathbf{x}, \mathbf{x}_0)$ is small.

Also, we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.



red

 $\|\mathbf{x}\| = \max(|x_1|, |x_2|)$

Examples.
$$V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$$

• $||f||_{\infty} = \max_{a \le x \le b} |f(x)|.$
• $||f||_1 = \int_a^b |f(x)| \, dx.$

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.