MATH 311
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Lecture 19:
Inner products.
Orthogonality in inner product spaces.
The Gram-Schmidt process.



Norm

The notion of norm generalizes the notion of length
of a vector in R".

Definition. Let V be a vector space. A function
a:V — R, usually denoted «a(x) = ||x||, is called
a norm on V if it has the following properties:

(i) ||x|| >0, ||x]] =0 only for x=0  (positivity)
(ii) |[rx|| = |r|||x]| forall reR (homogeneity)
(iii) Ix +yl| < [Ix]] + [yl (triangle inequality)

A normed vector space is a vector space endowed
with a norm. The norm defines a distance function
on the normed vector space: dist(x,y) = ||x —y||.



Examples. V =R", x = (x1,%,...,X,) € R".
o |Ix[oc = max(|xi], [xal, .., [xal)-

1/p

o |Ixll,= (PalP+ pelP+ -+ |xl?)"" p> 1.

Examples. V = Cla, b|, f:[a, b] — R.

o [l = max [F(x)]

b 1/p
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Inner product

The notion of inner product generalizes the notion
of dot product of vectors in R”.

Definition. Let V be a vector space. A function
f:V xV =R, usually denoted 5(x,y) = (x,y),
is called an inner product on V if it is positive,
symmetric, and bilinear. That is, if

(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) ={y,x) (symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+y,z) =(x,z) + (y,z) (distributive law)
An inner product space is a vector space endowed
with an inner product.



Examples. V =R".

o (X,y) =X y=xy1+ X2+ "+ XY
o <X, y> = d1X1)/1 + d2X2)/2 + e ann_yny
where di,d>,...,d, > 0.

e (x,y) = (Dx)-(Dy),
where D is an invertible nx n matrix.

Remarks. (a) Invertibility of D is necessary to show
that (x,x) =0 = x=0.

(b) The second example is a particular case of the
third one when D = diag(di’?, dy'%, ..., di'?).



Problem. Find an inner product on R? such that
(el,e1> = 2, (eg,e2> = 3, and (el,e2> = —1,
where e; = (1,0), e; = (0,1).

Let x = (x1,%), ¥y = (y1,5) € R*.
Then x = xje1 + xxe2, y = y1€1 + yre€s.
Using bilinearity, we obtain

(x,y) = (xie1 + x0€2, y1€1 + yr€))
= x1(€1, y1€1 + y2€2) + Xa(€2, y1€1 + y2€2)
= x1y1(e1, e1) + x1y2(e1, @) + xoy1(e2, e1) + xay2(e2, €2)
= 2x1y1 — X1y2 — Xoy1 + 3x2)».

It remains to check that (x,x) >0 for x # 0.
Indeed, (x,x) =2x? — 2x1x2 + 3x3 = (x1 — %) + X7 + 2x3.



Example. 'V = M, ,(R), space of mxn matrices.
e (A B) = trace(ABT).
If A= (a;) and B = (b;), then (A B) = EZaU jj-

i=1j=

Examples. V = Cla, b].

b
o (fg) = [ Fg(x)

b
o (Fg) = [ FE(wlx) o

where w is bounded, piecewise continuous, and
w > 0 everywhere on [a, b].

w is called the weight function.



Theorem Suppose (x,y) is an inner product on a
vector space V. Then

(x,y)* < (x,x)(y,y) forall x,yeV.
Proof: Forany te R let vi =x+ty. Then
<Vt7 Vt> - <X + ty,X + ty> - <X7X + ty> + t<y,X + ty>
= (x,x) + t(x,y) + t{y, x) + t3(y,y).

Assume that y # 0 and let t = _(x,y)I Then
{y.y)

(x,y)°

Vi, Vi) = (X, X) + E(Y, X) = (X, X) — .

Since (v¢,vy) > 0, the desired inequality follows.
In the case y =0, we have (x,y) = (y,y) =0.



Cauchy-Schwarz Inequality:

(%, ¥)] < /(%) \/(y, ).

Corollary 1 |x-y| < |[|x||[|y|| for all x,y € R".
Equivalently, for all x;, y; € R,

i+ + X)) < OF 4+ +x) 0+ +y7).

Corollary 2 For any f,g € C|a, b],

</ab fx)g(x) dx) / [F(x)|? dx - / 1g(x)[? dx.



Norms induced by inner products

Theorem Suppose (x,y) is an inner product on a
vector space V. Then ||x|| = \/(x,x) is a norm.

Proof: Positivity is obvious. Homogeneity:

[rx|| = 1/ {rx, rx) = \/r2(x,x) = |r| /(x,x).
Triangle inequality (follows from Cauchy-Schwarz's):
Ix +yl* = (x+y,x+y)
= (%,%) + (X, y) + {y,x) + {y, y)
< (% %) + [y + [y, x)[ + (¥, ¥)
< [|x[1Z =+ 2[Ix[ flyll + [IylI* = (lIxI] + [ly[})*.




Examples. e The length of a vector in R”,
X[ = Vx§ 53+ 47,
is the norm induced by the dot product

XYy =Xy1t+Xy+ -+ XpYn-

b 1/2
e The norm ||f]j2 = (/ ]f(x)]zdx> on the

vector space C|a, b] is induced by the inner product

(f.g) = | F(g(x) o



Angle
Let V' be an inner product space with an inner
product (-, -) and the induced norm || - ||. Then

[ < x|yl

for all x,y € V' (the Cauchy-Schwarz inequality).
Therefore we can define the angle between nonzero
vectors in V' by

Z(x,y) = arccos

x| [yl
Then (x,y) = ||x] |ly]l cos Z(x,y).

In particular, vectors x and y are orthogonal
(denoted x L y) if (x,y)=0.



Orthogonal sets

Let V' be an inner product space with an inner
product (-,-) and the induced norm || - ||.

Definition. A nonempty set S C V' of nonzero
vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. Thatis, 0 ¢ S and
(x,y) =0 forany x,y € S, x #y.

An orthogonal set S C V s called orthonormal if
|x][ =1 forany x € S.

Example. The standard basis e; = (1, .., 0),
e2:(0,1,0,...,0),...,en:(O,OO 1) in R”.
It is an orthonormal set.



Example

o V=Cl-ma] (fg)= / " F(x)g(x) dx.

fi(x) =sinx, f(x) =sin2x, ..., fo(x) =sinnx, ...

T m if m=
(T ) :/_ sin(mx) sin(nx) dx = { 0 i :#Z’

Thus the set {fi, h, f5,...} is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner
product

(f.g) = %/W f(x)g(x) dx.

—T



Orthogonality —> linear independence

Theorem Suppose vi,Vy, ...,V are nonzero
vectors that form an orthogonal set. Then
V1,Vo, ...,V are linearly independent.

Proof: Suppose tivi+ thovy + -+ teve =0
for some t, ty, ..., tx € R.

Then for any index 1 </ < k we have

<t1v1 + vy + - - - + Ly, Vi> = <0, Vi> = 0.
—> ti{vi, V) + to(vo, Vi) + -+ (Vi vp) = 0
By orthogonality, t{v;,v;) =0 = t; =0.



Orthonormal bases

Let vqi,vs,...,v, be an orthonormal basis for an
inner product space V.
Theorem Let x = xyvy + xovp + - - - + x,v,, and

Y = YiV1 + yoVo + - - - + yuv,, where x;, y; € R, Then
(i) (x,y) =xwy1+xy2 + -+ Xy,
@) Xl = VT oE T

Proof: (ii) follows from (i) when y = x.

i=1 j=1 i=1 j=1
S ) = S
=1

i=1 j=1



Orthogonal projection

Theorem Let V be an inner product space and V; be a
finite-dimensional subspace of V. Then any vector x € V' is
uniquely represented as x = p + o, where p € V4 and

ol Vo.

The component p is called the orthogonal projection of the
vector x onto the subspace V.

Vo

The projection p is closer to x than any other vector in V.
Hence the distance from x to V; is [|[x — p|| = ||o]|.



Let V be an inner product space. Let p be the
orthogonal projection of a vector x € V onto a
finite-dimensional subspace V;.

If Vi is a one-dimensional subspace spanned by a
(x, v)
(v, v)

vector v then p = V.

If vi,vo,...,v, is an orthogonal basis for V{ then
X,V X,V X, V),
(v1,v1) (v2, v2) {Vn, V)
Indeed, (p v-):zn: <X’VJ>( V) = X, vi) (vi,vi) = (x,v;)
) s Vi : <Vj,VJ> jo Vi <Vi,V,> iy Vi y Vi
j=1



Coordinates relative to an orthogonal basis

Theorem If vi,v,,..., v, is an orthogonal basis
for an inner product space V/, then

_{x,vp) (x,v2>v (x,v,,}v
") T v

for any vector x € V.

Corollary If vi,vy,...,v, is an orthonormal basis
for an inner product space V/, then

X = (X, v1)V1 + (X, V2)Va + - - + (X, V)V,

for any vector x € V.



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = Xy,
Vo = X2 — e, V1>V1,
<V1, V]_>
Vs = X3 — (x3, V1>v1 _ <X37V2>v2'
<V1, V]_> <V2,V2>
V, = X, — %o, V1) — = X, Vi-1) n—1
(v1,v1) (Vn-1,Vn-1)

Then vy,vy, ..., v, is an orthogonal basis for V.



Span(vy, ve) = Span(xy, X2)



Any basis Orthogonal basis
X1, X2, ..., Xp Vi,V2,...,Vj

Properties of the Gram-Schmidt process:

® V, = X) — (&1X1 +---+ozk_1xk_1), 1< k<n;

e the span of vi,..., v, is the same as the span
of X1,..., Xk
e v, is orthogonal to xi,...,X,_1;

® VvV, = X, — Pk, Where pg is the orthogonal
projection of the vector x, on the subspace spanned
by X1, .0y XK1,

e ||vk|| is the distance from x4 to the subspace
spanned by Xi,...,Xk_1.



Normalization

Let V be a vector space with an inner product.

Suppose vi,V»,...,V, is an orthogonal basis for V.
V2 Vp
Let w; = Wy = —— W, = .
[va [v2] [[vall
Then wy,ws,...,w, is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines
orthogonalization with normalization.
Suppose Xi,Xo,...,X, is a basis for an inner

product space V. Let

_ — w
Vi =X1, Wi = Tvall’

_ _ W
Vo = X3 — (X2, W)W, Wy = K

— _ _V3
V3 = X3 — (X3, W1)W1 — (X3, W2)Wp, W3 = Tva]]”
Vp = Xp <xna W1>W1 - - <Xn7 Wn—1>wn—1y

v

w, = =

T lvall

Then wq,wo, ..., w, is an orthonormal basis for V.



Problem. Let 1 be the plane spanned by vectors

x; = (1,1,0) and x, = (0,1,1).

(i) Find the orthogonal projection of the vector
= (4,0, —1) onto the plane I.

(ii) Find the distance from y to [1.

First we apply the Gram-Schmidt process to the basis xi, X»:
Vi = X1 = (]., ]., 0),

(X2, V1) 1 o
(v, v1) 5(1,1,0) = (=1/2,1/2,1).

Now that vi, v, is an orthogonal basis for 1, the orthogonal
projection of y onto [1 is

~{ysvi) v <Y,V2> 4 -3
P= <V1,V1> ! <V2,V2> 2(17170) 3/2

= (27 27 0) + (17 _17 _2) = (37 ]-7 _2)
The distance from y to Mis |y — p|| = [|(1, —-1,1)|| = V3.

1=(0,1,1) —

Vo = Xo —

—>(-1/2,1/2,1)




Problem. Approximate the function f(x) = e*
on the interval [—1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform
nhorm:

If = Plloc = max [f(x) — p(x)].

|x|<1

However there is no analytic way to find such a
polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

I el = ( [ ()~ pLoP o) 7



The norm || - ||2 is induced by the inner product

(g, h) = /_ g(x)h(x) dx.

1

Therefore ||f — p||2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3; of quadratic polynomials.

We should apply the Gram-Schmidt process to the
polynomials 1, x, x?, which form a basis for Ps.
This would yleld an orthogonal basis pg, p1, ps.
Then
(f, po) {f, p1) (f. p2)
X X) + p1(x) + P2(Xx).
S P P L A P L)




