
MATH 311

Topics in Applied Mathematics I

Lecture 20:
Review for Test 2.



Topics for Test 2

Vector spaces (Leon/Colley 3.5)

• Coordinates relative to a basis

• Change of basis, transition matrix

Linear transformations (Leon/Colley 4.1–4.3)

• Linear transformations
• Range and kernel

• Matrix of a linear transformation
• Change of basis for a linear operator

• Similar matrices



Topics for Test 2

Eigenvalues and eigenvectors (Leon/Colley 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial

• Diagonalization

Orthogonality (Leon/Colley 5.1–5.6)

• Euclidean structure in R
n

• Orthogonal complement

• Orthogonal projection
• Least squares problems

• Norms and inner products
• The Gram-Schmidt process



Sample problems for Test 2

Problem 1 Consider a linear operator L : R3 → R
3 given by

L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

(i) Find the matrix of the operator L.
(ii) Find the dimensions of the range and the kernel of L.
(iii) Find bases for the range and the kernel of L.

Problem 2 Let V be a subspace of F (R) spanned by
functions ex and e−x . Let L be a linear operator on V such

that

(

2 −1
−3 2

)

is the matrix of L relative to the basis ex ,

e−x . Find the matrix of L relative to the basis
cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).



Sample problems for Test 2

Problem 3 Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.
(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.
(iv) Find all eigenvalues of the matrix A2.

Problem 4 Find a linear polynomial which is the best least
squares fit to the following data:

x −2 −1 0 1 2
f (x) −3 −2 1 2 5

Problem 5 Let V be a subspace of R4 spanned by the vectors
x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0). Find the distance from
the vector y = (1, 0, 0, 0) to the subspaces V and V⊥.



Problem 1. Consider a linear operator L : R3 → R
3 given by

L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

(i) Find the matrix of the operator L.

Let A denote the matrix of the linear operator L. The
consecutive columns of A are vectors L(e1), L(e2), L(e3),
where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is the
standard basis for R3.

Given v = (x , y , z) ∈ R
3, we have that v · v1 = x + y + z

and L(v) =
(

x + y + z , 2(x + y + z), 2(x + y + z)
)

. It
follows that L(e1) = L(e2) = L(e3) = (1, 2, 2). Consequently,

A =





1 1 1
2 2 2
2 2 2



.



Problem 1. Consider a linear operator L : R3 → R
3 given by

L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

(i) Find the matrix of the operator L.

Alternative solution: Given a vector v = (x , y , z) ∈ R
3, let

α = v · v1 and (x1, y1, z1) = L(v). In terms of matrix algebra,
we have





x1
y1
z1



 = α





1
2
2



 =





1
2
2



(α) =





1
2
2





(

1 1 1
)





x
y
z





(note that scalar multiplication of a column vector is
equivalent to multiplication by a 1×1 matrix but the matrix
has to be on the right as otherwise the matrix product is not
defined). It follows that the matrix of the operator L is





1
2
2





(

1 1 1
)

=





1 1 1
2 2 2
2 2 2



.



Problem 1. Consider a linear operator L : R3 → R
3 given by

L(v) = (v · v1)v2, where v1 = (1, 1, 1), v2 = (1, 2, 2).

(ii) Find the dimensions of the range and the kernel of L.
(iii) Find bases for the range and the kernel of L.

The range Range(L) of the linear operator L is the subspace
of all vectors of the form L(v), where v ∈ R

3. It is easy to
see that Range(L) is the line spanned by the vector v2.
Hence dim Range(L) = 1 and v2 = (1, 2, 2) forms a basis.

The kernel ker(L) of the operator L is the subspace of all
vectors x ∈ R

3 such that L(x) = 0. Clearly, L(x) = 0 if and
only if x · v1 = 0. Therefore ker(L) is the orthogonal
complement of v1, the plane x + y + z = 0. The general
solution of the equation is x = −t − s, y = t, z = s, where
t, s ∈ R. It gives rise to a parametric representation
t(−1, 1, 0) + s(−1, 0, 1) of the plane. Thus the kernel of L is
spanned by vectors (−1, 1, 0) and (−1, 0, 1). Since the two
vectors are linearly independent, they form a basis for ker(L)
so that dim ker(L) = 2.



Problem 2. Let V be a subspace of F (R) spanned by
functions ex and e−x . Let L be a linear operator on V such

that

(

2 −1
−3 2

)

is the matrix of L relative to the basis ex ,

e−x . Find the matrix of L relative to the basis
cosh x = 1

2
(ex + e−x), sinh x = 1

2
(ex − e−x).

Let A denote the matrix of the operator L relative to the basis
ex , e−x (which is given) and B denote the matrix of L relative
to the basis cosh x , sinh x (which is to be found). By
definition of the functions cosh x and sinh x , the transition

matrix from cosh x , sinh x to ex , e−x is U = 1

2

(

1 1
1 −1

)

.

It follows that B = U−1AU. We obtain that

B =

(

1 1
1 −1

)(

2 −1
−3 2

)

· 1
2

(

1 1
1 −1

)

=

(

0 −1
1 4

)

.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A− λI ) = 0. We obtain that

det(A− λI ) =

∣

∣

∣

∣

∣

∣

1− λ 2 0
1 1− λ 1
0 2 1− λ

∣

∣

∣

∣

∣

∣

= (1− λ)3 − 2(1− λ)− 2(1− λ) = (1− λ)
(

(1− λ)2 − 4
)

= (1− λ)
(

(1− λ)− 2
)(

(1− λ) + 2
)

= −(λ− 1)(λ+ 1)(λ− 3).

Hence the matrix A has three eigenvalues: −1, 1, and 3.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x , y , z) of the matrix A associated with
an eigenvalue λ is a nonzero solution of the vector equation

(A−λI )v = 0 ⇐⇒





1− λ 2 0
1 1− λ 1
0 2 1− λ









x
y
z



 =





0
0
0



 .

To solve the equation, we convert the matrix A− λI to
reduced row echelon form.



First consider the case λ = −1. The row reduction yields

A+ I =





2 2 0
1 2 1
0 2 2



 →





1 1 0
1 2 1
0 2 2





→





1 1 0
0 1 1
0 2 2



 →





1 1 0
0 1 1
0 0 0



 →





1 0 −1
0 1 1
0 0 0



 .

Hence

(A+ I )v = 0 ⇐⇒
{

x − z = 0,
y + z = 0.

The general solution is x = t, y = −t, z = t, where t ∈ R.
In particular, v1 = (1,−1, 1) is an eigenvector of A associated
with the eigenvalue −1.



Secondly, consider the case λ = 1. The row reduction yields

A− I =





0 2 0

1 0 1

0 2 0



 →





1 0 1

0 2 0

0 2 0



 →





1 0 1

0 1 0

0 2 0



 →





1 0 1

0 1 0

0 0 0



.

Hence

(A− I )v = 0 ⇐⇒
{

x + z = 0,
y = 0.

The general solution is x = −t, y = 0, z = t, where t ∈ R.
In particular, v2 = (−1, 0, 1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case λ = 3. The row reduction yields

A−3I =





−2 2 0
1 −2 1
0 2 −2



→





1 −1 0
1 −2 1
0 2 −2



→





1 −1 0
0 −1 1
0 2 −2





→





1 −1 0
0 1 −1
0 2 −2



 →





1 −1 0
0 1 −1
0 0 0



 →





1 0 −1
0 1 −1
0 0 0



 .

Hence

(A− 3I )v = 0 ⇐⇒
{

x − z = 0,
y − z = 0.

The general solution is x = t, y = t, z = t, where t ∈ R.
In particular, v3 = (1, 1, 1) is an eigenvector of A associated
with the eigenvalue 3.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3

formed by its eigenvectors.

Namely, the vectors v1 = (1,−1, 1), v2 = (−1, 0, 1), and
v3 = (1, 1, 1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that v1, v2, v3 is a basis for R3.

Alternatively, the existence of a basis for R3 consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 3. Let A =





1 2 0
1 1 1
0 2 1



.

(iv) Find all eigenvalues of the matrix A2.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue λ, that is, v 6= 0 and Av = λv. Then

A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v.

Therefore v is also an eigenvector of the matrix A2 and the
associated eigenvalue is λ2. We already know that the matrix
A has eigenvalues −1, 1, and 3. It follows that A2 has
eigenvalues 1 and 9.

Since a 3×3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A2. One reason is that the eigenvalue 1 has
multiplicity 2.



Problem 4. Find a linear polynomial which is the best least
squares fit to the following data:

x −2 −1 0 1 2
f (x) −3 −2 1 2 5

We are looking for a function f (x) = c1 + c2x , where c1, c2
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables c1
and c2:























c1 − 2c2 = −3,
c1 − c2 = −2,
c1 = 1,
c1 + c2 = 2,
c1 + 2c2 = 5.

This system is inconsistent.



We can represent the system as a matrix equation Ac = y,
where

A =













1 −2

1 −1

1 0

1 1

1 2













, c =

(

c1

c2

)

, y =













−3

−2

1

2

5













.

The least squares solution c of the above system is a solution
of the normal system ATAc = ATy:

(

1 1 1 1 1

−2 −1 0 1 2

)













1 −2

1 −1

1 0

1 1

1 2













(

c1

c2

)

=

(

1 1 1 1 1

−2 −1 0 1 2

)













−3

−2

1

2

5













⇐⇒
(

5 0

0 10

)(

c1

c2

)

=

(

3

20

)

⇐⇒
{

c1 = 3/5
c2 = 2

Thus the function f (x) = 3

5
+ 2x is the best least squares fit

to the above data among linear polynomials.





Problem 5. Let V be a subspace of R4 spanned by the
vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0). Find the
distance from the vector y = (1, 0, 0, 0) to the subspaces V
and V⊥.

The vector y is uniquely decomposed as y = p+ o, where
p ∈ V and o ∈ V⊥. Then p is the orthogonal projection of y
onto the subspace V while o is the orthogonal projection of y
onto the orthogonal complement V⊥. Then the distance from
y to V equals ‖y− p‖ = ‖o‖ and the distance from y to V⊥

equals ‖y − o‖ = ‖p‖.
We have p = αx1 + βx2 for some α, β ∈ R. Then
o = y − p = y − αx1 − βx2. Since o ⊥ V ,

{

o · x1 = 0
o · x2 = 0

⇐⇒
{

(y − αx1 − βx2) · x1 = 0
(y − αx1 − βx2) · x2 = 0

⇐⇒
{

α(x1 · x1) + β(x2 · x1) = y · x1
α(x1 · x2) + β(x2 · x2) = y · x2



V

V
⊥

o

p

x



y = (1, 0, 0, 0), x1 = (1, 1, 1, 1), x2 = (1, 0, 3, 0).

{

α(x1 · x1) + β(x2 · x1) = y · x1
α(x1 · x2) + β(x2 · x2) = y · x2

⇐⇒
{

4α+ 4β = 1
4α+ 10β = 1

⇐⇒
{

α = 1/4
β = 0

p = 1

4
x1 =

1

4
(1, 1, 1, 1)

o = y − p = 1

4
(3,−1,−1,−1)

‖o‖ =
√
3

2
, ‖p‖ = 1

2
.

Thus the vector y lies at distance
√
3/2 from the subspace V

and at distance 1/2 from the subspace V⊥.



Problem 5 (extra). Let V be a subspace of R4 spanned by
the vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(i) Find an orthonormal basis for V .

First we apply the Gram-Schmidt orthogonalization process to
vectors x1, x2 and obtain an orthogonal basis v1, v2 for the
subspace V :

v1 = x1 = (1, 1, 1, 1),

v2 = x2−
x2 · v1
v1 · v1

v1 = (1, 0, 3, 0)−4

4
(1, 1, 1, 1) = (0,−1, 2,−1).

Then we normalize vectors v1, v2 to obtain an orthonormal
basis w1,w2 for V :

‖v1‖ = 2 =⇒ w1 =
v1

‖v1‖ = 1

2
(1, 1, 1, 1)

‖v2‖ =
√
6 =⇒ w2 =

v2
‖v2‖ = 1√

6
(0,−1, 2,−1)



Problem 5 (extra). Let V be a subspace of R4 spanned by
the vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(ii) Find an orthonormal basis for the orthogonal complement
V⊥.

Since the subspace V is spanned by vectors (1, 1, 1, 1) and
(1, 0, 3, 0), it is the row space of the matrix

A =

(

1 1 1 1
1 0 3 0

)

.

Then the orthogonal complement V⊥ is the nullspace of A.
To find the nullspace, we convert the matrix A to reduced row
echelon form:

(

1 1 1 1
1 0 3 0

)

→
(

1 0 3 0
1 1 1 1

)

→
(

1 0 3 0
0 1 −2 1

)

.



Hence a vector (x1, x2, x3, x4) ∈ R
4 belongs to V⊥ if and only

if

(

1 0 3 0
0 1 −2 1

)









x1
x2
x3
x4









=

(

0
0

)

⇐⇒
{

x1 + 3x3 = 0
x2 − 2x3 + x4 = 0

⇐⇒
{

x1 = −3x3
x2 = 2x3 − x4

The general solution of the system is (x1, x2, x3, x4) =
= (−3t, 2t − s, t, s) = t(−3, 2, 1, 0) + s(0,−1, 0, 1), where
t, s ∈ R.

It follows that V⊥ is spanned by vectors x3 = (0,−1, 0, 1)
and x4 = (−3, 2, 1, 0).



The vectors x3 = (0,−1, 0, 1) and x4 = (−3, 2, 1, 0) form a
basis for the subspace V⊥.

It remains to orthogonalize and normalize this basis:

v3 = x3 = (0,−1, 0, 1),

v4 = x4 −
x4 · v3
v3 · v3

v3 = (−3, 2, 1, 0)− −2

2
(0,−1, 0, 1)

= (−3, 1, 1, 1),

‖v3‖ =
√
2 =⇒ w3 =

v3
‖v3‖ = 1√

2
(0,−1, 0, 1),

‖v4‖ =
√
12 = 2

√
3 =⇒ w4 =

v4
‖v4‖ = 1

2
√
3
(−3, 1, 1, 1).

Thus the vectors w3 =
1√
2
(0,−1, 0, 1) and

w4 =
1

2
√
3
(−3, 1, 1, 1) form an orthonormal basis for V⊥.



Problem 5 (extra). Let V be a subspace of R4 spanned by
the vectors x1 = (1, 1, 1, 1) and x2 = (1, 0, 3, 0).

(iii) Find the distance from the vector y = (1, 0, 0, 0) to the
subspaces V and V⊥.

For any vector y ∈ R
4 the orthogonal projection of y onto the

subspace V is p = (y · w1)w1 + (y ·w2)w2 and the
orthogonal projection of y onto V⊥ is
o = (y ·w3)w3 + (y · w4)w4.

Then the distance from y to V is ‖y − p‖ = ‖o‖ and the
distance from y to V⊥ is ‖y− o‖ = ‖p‖.

In the case y = (1, 0, 0, 0), we obtain

p = 1

2
· 1

2
(1, 1, 1, 1) = 1

4
(1, 1, 1, 1),

o = −3

2
√
3
· 1

2
√
3
(−3, 1, 1, 1) = 1

4
(3,−1,−1,−1).

Hence ‖o‖ =
√
3

2
and ‖p‖ = 1

2
.


