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Lecture 22:

Gradient, divergence and curl.
Review of integral calculus.

Area and volume.



Gradient, divergence, and curl

Gradient of a scalar field f = f (x1, x2 . . . , xn) is

grad f =
( ∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)

.

Divergence of a vector field F = (F1, F2, . . . , Fn) is

div F =
∂F1

∂x1
+

∂F2

∂x2
+ · · ·+ ∂Fn

∂xn
.

Curl of a vector field F = (F1, F2, F3) is

curlF =
(∂F3

∂x2
− ∂F2

∂x3
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− ∂F3

∂x1
,
∂F2

∂x1
− ∂F1

∂x2

)

.

Informally, curlF =
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Del notation

Gradient, divergence, and curl can be denoted in a compact
way using the del (a.k.a. nabla a.k.a. atled) “operator”

∇ =
( ∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)

.

Namely, grad f = ∇f , divF = ∇ · F, curlF = ∇× F.

Theorem 1 div(curlF) = 0 wherever the vector field F is
twice continuously differentiable.

Theorem 2 curl(grad f ) = 0 wherever the scalar field f is
twice continuously differentiable.

In the del notation, ∇ · (∇× F) = 0 and ∇× (∇f ) = 0.

Note that ∇ · ∇f = ∆f (the Laplacian, also denoted ∇2f ).



Problem. Find curl(F), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

For any vector field F = (F1, F2, F3) we have,

informally,

curlF = ∇× F =
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or, formally,

curlF =
(∂F3
∂y

− ∂F2
∂z

,
∂F1
∂z

− ∂F3
∂x

,
∂F2
∂x

− ∂F1
∂y

)

.



Problem. Find curl(F), where

F(x , y , z) = (x2 + y 2)e1 + zex+ye2 + (x + sin y)e3.

Let G = curlF, G = (G1,G2,G3). We obtain

G1 =
∂F3

∂y
− ∂F2

∂z
=

∂

∂y
(x+sin y )− ∂

∂z
(zex+y ) = cos y −ex+y ,

G2 =
∂F1

∂z
− ∂F3

∂x
=

∂

∂z
(x2 + y 2)− ∂

∂x
(x + sin y ) = −1,

G3 =
∂F2

∂x
− ∂F1

∂y
=

∂

∂x
(zex+y )− ∂

∂y
(x2 + y 2) = zex+y − 2y .

Hence G = curlF = (cos y−ex+y , −1, zex+y−2y ).



Riemann sums and Riemann integral

Definition. A Riemann sum of a function f : [a, b] → R

with respect to a partition P = {x0, x1, . . . , xn} of [a, b]
generated by samples tj ∈ [xj−1, xj ] is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) (xj − xj−1).

Remark. P = {x0, x1, . . . , xn} is a partition of [a, b] if
a = x0 < x1 < · · · < xn−1 < xn = b. The norm of the
partition P is ‖P‖ = max1≤j≤n |xj − xj−1|.
Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
[a, b] and the limit I (f ) is called the integral of f over [a, b],

denoted
∫ b

a
f (x) dx .



Riemann sums and Darboux sums



Integration as a linear operation

Theorem 1 If functions f , g are integrable on an

interval [a, b], then the sum f + g is also
integrable on [a, b] and
∫ b

a

(

f (x) + g(x)
)

dx =

∫ b

a

f (x) dx +

∫ b

a

g(x) dx .

Theorem 2 If a function f is integrable on [a, b],

then for each α ∈ R the scalar multiple αf is also
integrable on [a, b] and

∫ b

a

αf (x) dx = α

∫ b

a

f (x) dx .



More properties of integrals

Theorem If a function f is integrable on [a, b] and
f ([a, b]) ⊂ [A,B], then for each continuous function
g : [A,B] → R the composition g ◦ f is also integrable on
[a, b].

Theorem If functions f and g are integrable on [a, b], then
so is fg .

Idea of the proof. 4fg = (f + g)2 − (f − g)2.

Theorem If a function f is integrable on [a, b], then it is
integrable on each subinterval [c, d ] ⊂ [a, b]. Moreover, for
any c ∈ (a, b) we have

∫ b

a

f (x) dx =

∫ c

a

f (x) dx +

∫ b

c

f (x) dx .



Comparison theorems for integrals

Theorem 1 If functions f , g are integrable on
[a, b] and f (x) ≤ g(x) for all x ∈ [a, b], then

∫ b

a

f (x) dx ≤
∫ b

a

g(x) dx .

Theorem 2 If f is integrable on [a, b] and

f (x) ≥ 0 for x ∈ [a, b], then

∫ b

a

f (x) dx ≥ 0.

Theorem 3 If f is integrable on [a, b], then the

function |f | is also integrable on [a, b] and
∣

∣

∣

∣

∫ b

a

f (x) dx

∣

∣

∣

∣

≤
∫ b

a

|f (x)| dx .



Fundamental theorem of calculus

Theorem If a function f is continuous on an

interval [a, b], then the function

F (x) =

∫ x

a

f (t) dt, x ∈ [a, b],

is continuously differentiable on [a, b]. Moreover,

F ′(x) = f (x) for all x ∈ [a, b].

Theorem If a function F is differentiable on [a, b]
and the derivative F ′ is integrable on [a, b], then

∫ b

a

F ′(x) dx = F (b)− F (a).



Problem. Evaluate

∫

1

0

x(x − 3)

(x − 1)2(x + 2)
dx .

To evaluate the integral, we need to decompose the rational

function R(x) = x(x−3)
(x−1)2(x+2)

into a sum of partial fractions:

R(x) =
a

x − 1
+

b

(x − 1)2
+

c

x + 2

=
a(x − 1)(x + 2) + b(x + 2) + c(x − 1)2

(x − 1)2(x + 2)

=
(a + c)x2 + (a + b − 2c)x + (−2a + 2b + c)

(x − 1)2(x + 2)
.







a + c = 1
a + b − 2c = −3

−2a + 2b + c = 0



Change of the variable in an integral

Theorem If φ is continuously differentiable on a closed
interval [a, b] and f is continuous on φ([a, b]), then
∫ φ(b)

φ(a)

f (t) dt =

∫ b

a

f (φ(x))φ′(x) dx =

∫ b

a

f (φ(x)) dφ(x).

Remarks. • The Leibniz differential dφ of the function φ is
defined by dφ(x) = φ′(x) dx = dφ

dx
dx .

• It is possible that φ(a) ≥ φ(b). Hence we set
∫ d

c

f (t) dt = −
∫ c

d

f (t) dt

if c > d . Also, we set the integral to be 0 if c = d .

• t = φ(x) is a proper change of the variable only if the
function φ is strictly monotone. However the theorem holds
even without this assumption.



Problem. Evaluate

∫

1/2

0

x√
1− x2

dx .

To integrate this function, we introduce a new

variable u = 1− x2:
∫

1/2

0

x√
1− x2

dx = −1

2

∫

1/2

0

(1− x2)′√
1− x2

dx

= −1

2

∫

1/2

0

1√
1− x2

d(1− x2) = −1

2

∫

3/4

1

1√
u
du

=

∫

1

3/4

1

2
√
u
du =

√
u
∣

∣

1

u=3/4
= 1−

√
3

2
.



Sets of measure zero

Definition. A subset E of the real line R is said to have
measure zero if for any ε > 0 the set E can be covered by a
sequence of open intervals J1, J2, . . . such that
∑∞

n=1 |Jn| < ε.

Examples. • Any set E that can be represented as a sequence
x1, x2, . . . (such sets are called countable) has measure zero.

Indeed, for any ε > 0, let

Jn =
(

xn −
ε

2n+1
, xn +

ε

2n+1

)

, n = 1, 2, . . .

Then E ⊂ J1 ∪ J2 ∪ . . . and |Jn| = ε/2n for all n ∈ N so
that

∑∞

n=1 |Jn| = ε.

• The set Q of rational numbers has measure zero (since it is
countable).

• Nondegenerate interval [a, b] is not a set of measure zero.



Lebesgue’s criterion for Riemann integrability

Definition. Suppose P(x) is a property depending
on x ∈ S , where S ⊂ R. We say that P(x) holds

for almost all x ∈ S (or almost everywhere on
S) if the set {x ∈ S | P(x) does not hold } has

measure zero.

Theorem A function f : [a, b] → R is Riemann
integrable on the interval [a, b] if and only if f is
bounded on [a, b] and continuous almost

everywhere on [a, b].



Let P be the smallest collection of subsets of R2 such that it
contains all polygons and if X ,Y ∈ P, then
X ∪ Y , X ∩ Y , X \ Y ∈ P.

Theorem There exists a unique function µ : P → R (called
the area function) that satisfies the following conditions:
• (positivity) µ(X ) ≥ 0 for all X ∈ P;
• (additivity) µ(X ∪ Y ) = µ(X ) + µ(Y ) if X ∩ Y = ∅;
• (translation invariance) µ(X + v) = µ(X ) for all X ∈ P
and v ∈ R2;
• µ(Q) = 1, where Q = [0, 1]× [0, 1] is the unit square.

The area function satisfies an extra condition:
• (monotonicity) µ(X ) ≤ µ(Y ) whenever X ⊂ Y .

Now for any bounded set X ⊂ R2 we let µ(X ) = inf
X⊂Y

µ(Y )

and µ(X ) = sup
Z⊂X

µ(Z ). Note that µ(X ) ≤ µ(X ). In the

case of equality, the set X is called Jordan measurable and
we let area(X ) = µ(X ).



Area, volume, and determinants

• 2×2 determinants and plane geometry
Let P be a parallelogram in the plane R2. Suppose that
vectors v1, v2 ∈ R2 are represented by adjacent sides of P.
Then area(P) = |detA|, where A = (v1, v2), a matrix whose
columns are v1 and v2.

Consider a linear operator LA : R2 → R2 given by
LA(v) = Av for any column vector v. Then
area(LA(D)) = |detA| area(D) for any bounded domain D.

• 3×3 determinants and space geometry
Let Π be a parallelepiped in space R3. Suppose that vectors
v1, v2, v3 ∈ R3 are represented by adjacent edges of Π. Then
volume(Π) = |detB |, where B = (v1, v2, v3), a matrix whose
columns are v1, v2, and v3.

Similarly, volume(LB(D)) = |detB | volume(D) for any
bounded domain D ⊂ R3.



v1

v2
v3

volume(Π) = |detB |, where B = (v1, v2, v3). Note that the
parallelepiped Π is the image under LB of a unit cube whose
adjacent edges are e1, e2, e3.

The triple v1, v2, v3 obeys the right-hand rule. We say that
LB preserves orientation if it preserves the hand rule for any
basis. This is the case if and only if detB > 0.


