MATH 311
 Topics in Applied Mathematics I

 Lecture 23:Area and volume (continued). Multiple integrals.

Let \mathcal{P} be the smallest collection of subsets of \mathbb{R}^{2} such that it contains all polygons and if $X, Y \in \mathcal{P}$, then $X \cup Y, X \cap Y, X \backslash Y \in \mathcal{P}$.
Theorem There exists a unique function $\mu: \mathcal{P} \rightarrow \mathbb{R}$ (called the area function) that satisfies the following conditions:

- (positivity) $\mu(X) \geq 0$ for all $X \in \mathcal{P}$;
- (additivity) $\mu(X \cup Y)=\mu(X)+\mu(Y)$ if $X \cap Y=\emptyset$;
- (translation invariance) $\mu(X+\mathbf{v})=\mu(X)$ for all $X \in \mathcal{P}$ and $\mathbf{v} \in \mathbb{R}^{2}$;
- $\mu(Q)=1$, where $Q=[0,1] \times[0,1]$ is the unit square.

The area function satisfies an extra condition:

- (monotonicity) $\mu(X) \leq \mu(Y)$ whenever $X \subset Y$.

Now for any bounded set $X \subset \mathbb{R}^{2}$ we let $\bar{\mu}(X)=\inf _{X \subset Y} \mu(Y)$ and $\underline{\mu}(X)=\sup _{Z \subset X} \mu(Z)$. Note that $\underline{\mu}(X) \leq \bar{\mu}(X)$. In the case of equality, the set X is called Jordan measurable and we let $\operatorname{area}(X)=\bar{\mu}(X)$.

Area, volume, and determinants

- 2×2 determinants and plane geometry Let P be a parallelogram in the plane \mathbb{R}^{2}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{2}$ are represented by adjacent sides of P. Then area $(P)=|\operatorname{det} A|$, where $A=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$, a matrix whose columns are \mathbf{v}_{1} and \mathbf{v}_{2}.
Consider a linear operator $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $L_{A}(\mathbf{v})=A \mathbf{v}$ for any column vector \mathbf{v}. Then $\operatorname{area}\left(L_{A}(D)\right)=|\operatorname{det} A| \operatorname{area}(D)$ for any bounded domain D.
- 3×3 determinants and space geometry

Let Π be a parallelepiped in space \mathbb{R}^{3}. Suppose that vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$ are represented by adjacent edges of Π. Then volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$, a matrix whose columns are $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
Similarly, volume $\left(L_{B}(D)\right)=|\operatorname{det} B|$ volume (D) for any bounded domain $D \subset \mathbb{R}^{3}$.

volume $(\Pi)=|\operatorname{det} B|$, where $B=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$. Note that the parallelepiped Π is the image under L_{B} of a unit cube whose adjacent edges are $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$.
The triple $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ obeys the right-hand rule. We say that L_{B} preserves orientation if it preserves the hand rule for any basis. This is the case if and only if $\operatorname{det} B>0$.

Parallelepiped is a prism.
(Volume) $=($ area of the base $) \times($ height $)$
Area of the base $=\|\mathbf{y} \times \mathbf{z}\|$
Volume $=|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

Tetrahedron is a pyramid.
$($ Volume $)=\frac{1}{3}$ (area of the base) $\times($ height $)$
Area of the base $=\frac{1}{2}\|\mathbf{y} \times \mathbf{z}\|$
\Longrightarrow Volume $=\frac{1}{6}|\mathbf{x} \cdot(\mathbf{y} \times \mathbf{z})|$

Riemann sums in two dimensions

Consider a closed coordinate rectangle $R=[a, b] \times[c, d] \subset \mathbb{R}^{2}$.
Definition. A Riemann sum of a function $f: R \rightarrow \mathbb{R}$ with respect to a partition $P=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ of R generated by samples $t_{j} \in D_{j}$ is a sum

$$
\mathcal{S}\left(f, P, t_{j}\right)=\sum_{j=1}^{n} f\left(t_{j}\right) \operatorname{area}\left(D_{j}\right)
$$

The norm of the partition P is $\|P\|=\max _{1 \leq j \leq n} \operatorname{diam}\left(D_{j}\right)$.
Definition. The Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ converge to a limit $I(f)$ as the norm $\|P\| \rightarrow 0$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|P\|<\delta$ implies $\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|<\varepsilon$ for any partition P and choice of samples t_{j}.
If this is the case, then the function f is called integrable on R and the limit $I(f)$ is called the integral of f over R.

Double integral

Closed coordinate rectangle $R=[a, b] \times[c, d]$
$=\left\{(x, y) \in \mathbb{R}^{2} \mid a \leq x \leq b, \quad c \leq y \leq d\right\}$.
Notation: $\iint_{R} f d A$ or $\iint_{R} f(x, y) d x d y$.
Theorem 1 If f is continuous on the closed rectangle R, then f is integrable.

Theorem 2 A function $f: R \rightarrow \mathbb{R}$ is Riemann integrable on the rectangle R if and only if f is bounded on R and continuous almost everywhere on R (that is, the set of discontinuities of f has zero area).

Fubini's Theorem

Fubini's Theorem allows us to reduce a multiple integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on $R=[a, b] \times[c, d]$, then

$$
\iint_{R} f d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y .
$$

In particular, this implies that we can change the order of integration in a repeated integral.

Corollary If a function g is integrable on $[a, b]$ and a function h is integrable on $[c, d]$, then the function $f(x, y)=g(x) h(y)$ is integrable on $R=[a, b] \times[c, d]$ and

$$
\iint_{R} g(x) h(y) d x d y=\int_{a}^{b} g(x) d x \cdot \int_{c}^{d} h(y) d y .
$$

Integrals over general domains

Suppose $f: D \rightarrow \mathbb{R}$ is a function defined on a (Jordan) measurable set $D \subset \mathbb{R}^{2}$. Since D is bounded, it is contained in a rectangle R. To define the integral of f over D, we extend the function f to a function on R :

$$
f^{\mathrm{ext}}(x, y)=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \in D \\
0 & \text { if }(x, y) \notin D
\end{array}\right.
$$

Definition. $\iint_{D} f d A$ is defined to be $\iint_{R} f^{\mathrm{ext}} d A$.
In particular, $\operatorname{area}(D)=\iint_{D} 1 d A$.

Integration as a linear operation

Theorem 1 If functions f, g are integrable on a set $D \subset \mathbb{R}^{2}$, then the sum $f+g$ is also integrable on D and

$$
\iint_{D}(f+g) d A=\iint_{D} f d A+\iint_{D} g d A
$$

Theorem 2 If a function f is integrable on a set $D \subset \mathbb{R}^{2}$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on D and

$$
\iint_{D} \alpha f d A=\alpha \iint_{D} f d A
$$

More properties of integrals

Theorem 3 If functions f, g are integrable on a set $D \subset \mathbb{R}^{2}$, and $f(x, y) \leq g(x, y)$ for all $(x, y) \in D$, then

$$
\iint_{D} f d A \leq \iint_{D} g d A
$$

Theorem 4 If a function f is integrable on sets $D_{1}, D_{2} \subset \mathbb{R}^{2}$, then it is integrable on their union $D_{1} \cup D_{2}$. Moreover, if the sets D_{1} and D_{2} are disjoint up to a set of zero area, then

$$
\iint_{D_{1} \cup D_{2}} f d A=\iint_{D_{1}} f d A+\iint_{D_{2}} f d A .
$$

Change of variables in a double integral

Theorem Let $D \subset \mathbb{R}^{2}$ be a measurable domain and f be an integrable function on D. If
$\mathbf{T}=(u, v)$ is a smooth coordinate mapping such that \mathbf{T}^{-1} is defined on D, then

$$
\begin{aligned}
& \iint_{D} f(u, v) d u d v \\
& =\iint_{\mathbf{T}^{-1}(D)} f(u(x, y), v(x, y))\left|\operatorname{det} \frac{\partial(u, v)}{\partial(x, y)}\right| d x d y
\end{aligned}
$$

In particular, the integral in the right-hand side is well defined.

Problem Evaluate a double integral

$$
\iint_{D} f(x, y) d x d y
$$

over a disc D bounded by the circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=R^{2}$.
To evaluate the integral, we move the origin to (x_{0}, y_{0}) and then switch to polar coordinates (r, ϕ). That is, we use the substitution $(x, y)=T(r, \phi)=\left(x_{0}+r \cos \phi, y_{0}+r \sin \phi\right)$.
Jacobian matrix: $J=\left(\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi}\end{array}\right)=\left(\begin{array}{cc}\cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi\end{array}\right)$.
Then $\operatorname{det} J=r \cos ^{2} \phi+r \sin ^{2} \phi=r$. Hence

$$
\begin{gathered}
\iint_{D} f(x, y) d x d y=\iint_{T^{-1}(D)} f\left(x_{0}+r \cos \phi, y_{0}+r \sin \phi\right)|\operatorname{det} J| d r d \phi \\
=\int_{0}^{2 \pi} \int_{0}^{R} f\left(x_{0}+r \cos \phi, y_{0}+r \sin \phi\right) r d r d \phi .
\end{gathered}
$$

Problem Evaluate a double integral

$$
\iint_{P} f(x, y) d x d y
$$

over a parallelogram P with vertices $(-1,-1),(1,0),(2,2)$, and $(0,1)$.

Adjacent edges of the parallelogram P are represented by vectors $\mathbf{v}_{1}=(1,0)-(-1,-1)=(2,1)$ and $\mathbf{v}_{2}=(0,1)-(-1,-1)=(1,2)$.
Consider a transformation L of the plane \mathbb{R}^{2} given by

$$
L\binom{u}{v}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{u}{v}+\binom{-1}{-1}=\binom{2 u+v-1}{u+2 v-1}
$$

(columns of the matrix are vectors \mathbf{v}_{1} and \mathbf{v}_{2}). By construction, L maps the unit square $[0,1] \times[0,1]$ onto the parallelogram P. The Jacobian matrix J of L is the same at any point: $J=\frac{\partial(x, y)}{\partial(u, v)}=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

Changing coordinates in the integral from (x, y) to (u, v) so that

$$
(x, y)=L(u, v)=(2 u+v-1, u+2 v-1)
$$

we obtain
$\iint_{P} f(x, y) d x d y$

$$
\begin{aligned}
& =\iint_{L^{-1}(P)} f(2 u+v-1, u+2 v-1)|\operatorname{det} J| d u d v \\
& =3 \int_{0}^{1} \int_{0}^{1} f(2 u+v-1, u+2 v-1) d u d v
\end{aligned}
$$

Triple integral

To integrate in \mathbb{R}^{3}, volumes are used instead of areas in \mathbb{R}^{2}. Instead of coordinate rectangles, basic sets are coordinate boxes (or bricks) $B=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{3}, b_{3}\right] \subset \mathbb{R}^{3}$. Then we can define an integral of a function f over a measurable set $D \subset \mathbb{R}^{3}$.
Notation: $\iiint_{D} f d V$ or $\iiint_{D} f(x, y, z) d x d y d z$.
The properties of triple integrals are completely analogous to those of double integrals. In particular, Fubini's Theorem is formulated as follows.

Theorem If a function f is integrable on a brick $B=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{3}, b_{3}\right] \subset \mathbb{R}^{3}$, then

$$
\iiint_{B} f d V=\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{b_{2}}\left(\int_{a_{3}}^{b_{3}} f(x, y, z) d z\right) d y\right) d x
$$

Problem Find the volume of a tetrahedron (i.e., triangular pyramid) with vertices at points $(0,2,1),(1,0,0),(2,1,2)$, and $(3,1,1)$.

Let P denote the pyramid. Let $A_{0}=(1,0,0), A_{1}=(0,2,1)$, $A_{2}=(2,1,2)$ and $A_{3}=(3,1,1)$. Three edges adjacent to A_{0} are represented by vectors

$$
\begin{aligned}
& \mathbf{v}_{1}=\overrightarrow{A_{0} A_{1}}=(0,2,1)-(1,0,0)=(-1,2,1), \\
& \mathbf{v}_{2}=\overrightarrow{A_{0} A_{2}}=(2,1,2)-(1,0,0)=(1,1,2), \\
& \mathbf{v}_{3}=\overrightarrow{A_{0} A_{3}}=(3,1,1)-(1,0,0)=(2,1,1) .
\end{aligned}
$$

Consider a transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
-1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

The matrix is $M=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$.

By construction, $T(0,0,0)=A_{0}, T(1,0,0)=A_{1}$, $T(0,1,0)=A_{2}$ and $T(0,0,1)=A_{3}$. It follows that $T^{-1}(P)$ is the triangular pyramid with vertices at points $(0,0,0)$, $(1,0,0),(0,1,0)$ and $(0,0,1)$.
Consider $(0,0,1)$ to be the apex of the pyramid $T^{-1}(P)$.
Then the base is an isosceles right triangle with legs of length 1. Its area equals $\frac{1}{2}$. Besides, the edge $(0,0,0)-(0,0,1)$ is the altitude. Therefore the volume of the pyramid $T^{-1}(P)$ equals $\frac{1}{3} \cdot \frac{1}{2} \cdot 1=\frac{1}{6}$.
We have volume $(T(D))=|\operatorname{det} M|$ volume (D) for any domain $D \subset \mathbb{R}^{3}$. In particular, volume $(P)=|\operatorname{det} M| / 6$.
$\operatorname{det} M=\left|\begin{array}{rrr}-1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 1\end{array}\right|=\left|\begin{array}{rrr}-1 & 1 & 2 \\ 0 & 3 & 5 \\ 0 & 3 & 3\end{array}\right|=\left|\begin{array}{rrr}-1 & 1 & 2 \\ 0 & 3 & 5 \\ 0 & 0 & -2\end{array}\right|=6$.
Thus volume $(P)=6 \cdot \frac{1}{6}=1$.

