MATH 311 Topics in Applied Mathematics I Lecture 23: Area and volume (continued). Multiple integrals.

Let \mathcal{P} be the smallest collection of subsets of \mathbb{R}^2 such that it contains all polygons and if $X, Y \in \mathcal{P}$, then $X \cup Y, X \cap Y, X \setminus Y \in \mathcal{P}$.

Theorem There exists a unique function $\mu : \mathcal{P} \to \mathbb{R}$ (called the **area function**) that satisfies the following conditions:

- (positivity) $\mu(X) \ge 0$ for all $X \in \mathcal{P}$;
- (additivity) $\mu(X \cup Y) = \mu(X) + \mu(Y)$ if $X \cap Y = \emptyset$;
- (translation invariance) $\mu(X + \mathbf{v}) = \mu(X)$ for all $X \in \mathcal{P}$ and $\mathbf{v} \in \mathbb{R}^2$;
 - $\mu(Q) = 1$, where $Q = [0,1] \times [0,1]$ is the unit square.

The area function satisfies an extra condition:

• (monotonicity) $\mu(X) \leq \mu(Y)$ whenever $X \subset Y$.

Now for any bounded set $X \subset \mathbb{R}^2$ we let $\overline{\mu}(X) = \inf_{X \subset Y} \mu(Y)$ and $\underline{\mu}(X) = \sup_{Z \subset X} \mu(Z)$. Note that $\underline{\mu}(X) \leq \overline{\mu}(X)$. In the case of equality, the set X is called **Jordan measurable** and we let $\operatorname{area}(X) = \overline{\mu}(X)$.

Area, volume, and determinants

• 2×2 determinants and plane geometry

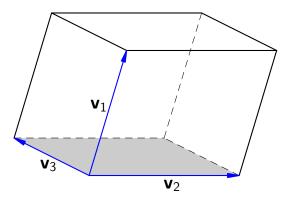
Let *P* be a parallelogram in the plane \mathbb{R}^2 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{R}^2$ are represented by adjacent sides of *P*. Then $\operatorname{area}(P) = |\det A|$, where $A = (\mathbf{v}_1, \mathbf{v}_2)$, a matrix whose columns are \mathbf{v}_1 and \mathbf{v}_2 .

Consider a linear operator $L_A : \mathbb{R}^2 \to \mathbb{R}^2$ given by $L_A(\mathbf{v}) = A\mathbf{v}$ for any column vector \mathbf{v} . Then $\operatorname{area}(L_A(D)) = |\det A| \operatorname{area}(D)$ for any bounded domain D.

• 3×3 determinants and space geometry

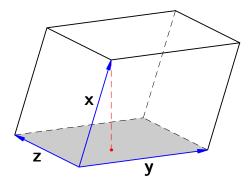
Let Π be a parallelepiped in space \mathbb{R}^3 . Suppose that vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathbb{R}^3$ are represented by adjacent edges of Π . Then $\operatorname{volume}(\Pi) = |\det B|$, where $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$, a matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 .

Similarly, volume $(L_B(D)) = |\det B|$ volume(D) for any bounded domain $D \subset \mathbb{R}^3$.

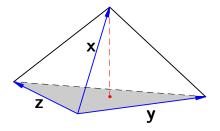


volume(Π) = |det B|, where $B = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$. Note that the parallelepiped Π is the image under L_B of a unit cube whose adjacent edges are $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$.

The triple $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ obeys the right-hand rule. We say that L_B preserves orientation if it preserves the hand rule for any basis. This is the case if and only if det B > 0.



Parallelepiped is a prism. (Volume) = (area of the base) × (height) Area of the base = $\|\mathbf{y} \times \mathbf{z}\|$ Volume = $|\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$



Tetrahedron is a pyramid. (Volume) = $\frac{1}{3}$ (area of the base) × (height) Area of the base = $\frac{1}{2} ||\mathbf{y} \times \mathbf{z}||$ \implies Volume = $\frac{1}{6} |\mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})|$

Riemann sums in two dimensions

Consider a closed coordinate rectangle $R = [a, b] \times [c, d] \subset \mathbb{R}^2$.

Definition. A **Riemann sum** of a function $f : R \to \mathbb{R}$ with respect to a partition $P = \{D_1, D_2, \dots, D_n\}$ of R generated by samples $t_j \in D_j$ is a sum

$$\mathcal{S}(f, P, t_j) = \sum_{j=1}^n f(t_j) \operatorname{area}(D_j).$$

The norm of the partition P is $||P|| = \max_{1 \le j \le n} \operatorname{diam}(D_j)$.

Definition. The Riemann sums $\mathcal{S}(f, P, t_j)$ converge to a limit I(f) as the norm $||P|| \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||P|| < \delta$ implies $|\mathcal{S}(f, P, t_j) - I(f)| < \varepsilon$ for any partition P and choice of samples t_j .

If this is the case, then the function f is called **integrable** on R and the limit I(f) is called the **integral** of f over R.

Double integral

Closed coordinate rectangle $R = [a, b] \times [c, d]$ = { $(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d$ }. Notation: $\iint_R f \, dA$ or $\iint_R f(x, y) \, dx \, dy$.

Theorem 1 If f is continuous on the closed rectangle R, then f is integrable.

Theorem 2 A function $f : R \to \mathbb{R}$ is Riemann integrable on the rectangle R if and only if f is bounded on R and continuous almost everywhere on R (that is, the set of discontinuities of f has zero area).

Fubini's Theorem

Fubini's Theorem allows us to reduce a multiple integral to a repeated one-dimensional integral.

Theorem If a function f is integrable on $R = [a, b] \times [c, d]$, then

$$\iint_R f \, dA = \int_a^b \left(\int_c^d f(x, y) \, dy \right) dx = \int_c^d \left(\int_a^b f(x, y) \, dx \right) dy.$$

In particular, this implies that we can change the order of integration in a repeated integral.

Corollary If a function g is integrable on [a, b] and a function h is integrable on [c, d], then the function f(x, y) = g(x)h(y) is integrable on $R = [a, b] \times [c, d]$ and $\iint_R g(x)h(y) dx dy = \int_a^b g(x) dx \cdot \int_c^d h(y) dy.$

Integrals over general domains

Suppose $f : D \to \mathbb{R}$ is a function defined on a (Jordan) measurable set $D \subset \mathbb{R}^2$. Since D is bounded, it is contained in a rectangle R. To define the integral of f over D, we extend the function f to a function on R:

$$f^{\mathrm{ext}}(x,y) = \begin{cases} f(x,y) & \text{if } (x,y) \in D, \\ 0 & \text{if } (x,y) \notin D. \end{cases}$$

Definition. $\iint_D f \, dA$ is defined to be $\iint_R f^{\text{ext}} \, dA$.

In particular, $\operatorname{area}(D) = \iint_D 1 \, dA$.

Integration as a linear operation

Theorem 1 If functions f, g are integrable on a set $D \subset \mathbb{R}^2$, then the sum f + g is also integrable on D and

$$\iint_D (f+g) \, dA = \iint_D f \, dA + \iint_D g \, dA.$$

Theorem 2 If a function f is integrable on a set $D \subset \mathbb{R}^2$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on D and

$$\iint_D \alpha f \, dA = \alpha \iint_D f \, dA.$$

More properties of integrals

Theorem 3 If functions f, g are integrable on a set $D \subset \mathbb{R}^2$, and $f(x, y) \leq g(x, y)$ for all $(x, y) \in D$, then

$$\iint_D f \, dA \leq \iint_D g \, dA.$$

Theorem 4 If a function f is integrable on sets $D_1, D_2 \subset \mathbb{R}^2$, then it is integrable on their union $D_1 \cup D_2$. Moreover, if the sets D_1 and D_2 are disjoint up to a set of zero area, then

$$\iint_{D_1\cup D_2} f \, dA = \iint_{D_1} f \, dA + \iint_{D_2} f \, dA.$$

Change of variables in a double integral

Theorem Let $D \subset \mathbb{R}^2$ be a measurable domain and f be an integrable function on D. If $\mathbf{T} = (u, v)$ is a smooth coordinate mapping such that \mathbf{T}^{-1} is defined on D, then

$$\iint_{D} f(u, v) \, du \, dv$$

=
$$\iint_{\mathbf{T}^{-1}(D)} f(u(x, y), v(x, y)) \left| \det \frac{\partial(u, v)}{\partial(x, y)} \right| \, dx \, dy.$$

In particular, the integral in the right-hand side is well defined.

Problem Evaluate a double integral

$$\iint_D f(x,y)\,dx\,dy$$

over a disc D bounded by the circle $(x-x_0)^2 + (y-y_0)^2 = R^2$.

To evaluate the integral, we move the origin to (x_0, y_0) and then switch to polar coordinates (r, ϕ) . That is, we use the substitution $(x, y) = T(r, \phi) = (x_0 + r \cos \phi, y_0 + r \sin \phi)$.

Jacobian matrix:
$$J = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \phi} \end{pmatrix} = \begin{pmatrix} \cos \phi & -r \sin \phi \\ \sin \phi & r \cos \phi \end{pmatrix}.$$

Then det $J = r \cos^2 \phi + r \sin^2 \phi = r$. Hence

$$\iint_D f(x, y) \, dx \, dy = \iint_{T^{-1}(D)} f(x_0 + r \cos \phi, \, y_0 + r \sin \phi) \left| \det J \right| \, dr \, d\phi$$
$$= \int_0^{2\pi} \int_0^R f(x_0 + r \cos \phi, \, y_0 + r \sin \phi) \, r \, dr \, d\phi.$$

Problem Evaluate a double integral

$$\iint_P f(x,y) \, dx \, dy$$

over a parallelogram P with vertices $(-1,-1),\ (1,0),\ (2,2),$ and (0,1).

Adjacent edges of the parallelogram P are represented by vectors $\mathbf{v}_1 = (1,0) - (-1,-1) = (2,1)$ and $\mathbf{v}_2 = (0,1) - (-1,-1) = (1,2)$.

Consider a transformation *L* of the plane \mathbb{R}^2 given by

$$L\begin{pmatrix} u\\v \end{pmatrix} = \begin{pmatrix} 2 & 1\\1 & 2 \end{pmatrix} \begin{pmatrix} u\\v \end{pmatrix} + \begin{pmatrix} -1\\-1 \end{pmatrix} = \begin{pmatrix} 2u+v-1\\u+2v-1 \end{pmatrix}$$

(columns of the matrix are vectors \mathbf{v}_1 and \mathbf{v}_2). By construction, L maps the unit square $[0,1] \times [0,1]$ onto the parallelogram P. The Jacobian matrix J of L is the same at

any point:
$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

Changing coordinates in the integral from (x, y) to (u, v) so that

$$(x, y) = L(u, v) = (2u + v - 1, u + 2v - 1),$$

we obtain

$$\iint_{P} f(x, y) \, dx \, dy$$

=
$$\iint_{L^{-1}(P)} f(2u + v - 1, \, u + 2v - 1) \, |\det J| \, du \, dv$$

=
$$3 \int_{0}^{1} \int_{0}^{1} f(2u + v - 1, \, u + 2v - 1) \, du \, dv.$$

Triple integral

To integrate in \mathbb{R}^3 , volumes are used instead of areas in \mathbb{R}^2 . Instead of coordinate rectangles, basic sets are coordinate boxes (or bricks) $B = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \subset \mathbb{R}^3$. Then we can define an integral of a function f over a measurable set $D \subset \mathbb{R}^3$.

Notation:
$$\iiint_D f \, dV$$
 or $\iiint_D f(x, y, z) \, dx \, dy \, dz$.

The properties of triple integrals are completely analogous to those of double integrals. In particular, Fubini's Theorem is formulated as follows.

Theorem If a function f is integrable on a brick $B = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \subset \mathbb{R}^3$, then

$$\iiint_B f \, dV = \int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} \left(\int_{a_3}^{b_3} f(x, y, z) \, dz \right) dy \right) dx.$$

Problem Find the volume of a tetrahedron (i.e., triangular pyramid) with vertices at points (0, 2, 1), (1, 0, 0), (2, 1, 2), and (3, 1, 1).

Let *P* denote the pyramid. Let $A_0 = (1, 0, 0)$, $A_1 = (0, 2, 1)$, $A_2 = (2, 1, 2)$ and $A_3 = (3, 1, 1)$. Three edges adjacent to A_0 are represented by vectors

$$\mathbf{v}_1 = \overrightarrow{A_0A_1} = (0, 2, 1) - (1, 0, 0) = (-1, 2, 1),$$

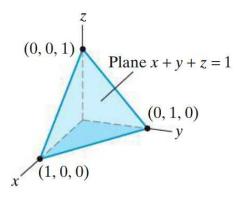
$$\mathbf{v}_2 = \overrightarrow{A_0A_2} = (2, 1, 2) - (1, 0, 0) = (1, 1, 2),$$

$$\mathbf{v}_3 = \overrightarrow{A_0A_3} = (3, 1, 1) - (1, 0, 0) = (2, 1, 1).$$

Consider a transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$T\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}-1 & 1 & 2\\2 & 1 & 1\\1 & 2 & 1\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix} + \begin{pmatrix}1\\0\\0\end{pmatrix}.$$

The matrix is $M = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.



By construction, $T(0,0,0) = A_0$, $T(1,0,0) = A_1$, $T(0,1,0) = A_2$ and $T(0,0,1) = A_3$. It follows that $T^{-1}(P)$ is the triangular pyramid with vertices at points (0,0,0), (1,0,0), (0,1,0) and (0,0,1).

Consider (0, 0, 1) to be the apex of the pyramid $T^{-1}(P)$. Then the base is an isosceles right triangle with legs of length 1. Its area equals $\frac{1}{2}$. Besides, the edge (0, 0, 0) - (0, 0, 1) is the altitude. Therefore the volume of the pyramid $T^{-1}(P)$ equals $\frac{1}{3} \cdot \frac{1}{2} \cdot 1 = \frac{1}{6}$.

We have volume(T(D)) = $|\det M|$ volume(D) for any domain $D \subset \mathbb{R}^3$. In particular, volume(P) = $|\det M|/6$.

$$\det M = \begin{vmatrix} -1 & 1 & 2 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{vmatrix} = \begin{vmatrix} -1 & 1 & 2 \\ 0 & 3 & 5 \\ 0 & 3 & 3 \end{vmatrix} = \begin{vmatrix} -1 & 1 & 2 \\ 0 & 3 & 5 \\ 0 & 0 & -2 \end{vmatrix} = 6.$$

Thus volume(P) = $6 \cdot \frac{1}{6} = 1$.