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Lecture 23:
Area and volume (continued).

Multiple integrals.



Let P be the smallest collection of subsets of R2 such that it
contains all polygons and if X ,Y ∈ P, then
X ∪ Y , X ∩ Y , X \ Y ∈ P.

Theorem There exists a unique function µ : P → R (called
the area function) that satisfies the following conditions:
• (positivity) µ(X ) ≥ 0 for all X ∈ P;
• (additivity) µ(X ∪ Y ) = µ(X ) + µ(Y ) if X ∩ Y = ∅;
• (translation invariance) µ(X + v) = µ(X ) for all X ∈ P
and v ∈ R

2;
• µ(Q) = 1, where Q = [0, 1]× [0, 1] is the unit square.

The area function satisfies an extra condition:
• (monotonicity) µ(X ) ≤ µ(Y ) whenever X ⊂ Y .

Now for any bounded set X ⊂ R
2 we let µ(X ) = inf

X⊂Y
µ(Y )

and µ(X ) = sup
Z⊂X

µ(Z ). Note that µ(X ) ≤ µ(X ). In the

case of equality, the set X is called Jordan measurable and
we let area(X ) = µ(X ).



Area, volume, and determinants

• 2×2 determinants and plane geometry
Let P be a parallelogram in the plane R

2. Suppose that
vectors v1, v2 ∈ R

2 are represented by adjacent sides of P.
Then area(P) = |detA|, where A = (v1, v2), a matrix whose
columns are v1 and v2.

Consider a linear operator LA : R2 → R
2 given by

LA(v) = Av for any column vector v. Then
area(LA(D)) = |detA| area(D) for any bounded domain D.

• 3×3 determinants and space geometry
Let Π be a parallelepiped in space R

3. Suppose that vectors
v1, v2, v3 ∈ R

3 are represented by adjacent edges of Π. Then
volume(Π) = |detB |, where B = (v1, v2, v3), a matrix whose
columns are v1, v2, and v3.

Similarly, volume(LB(D)) = |detB | volume(D) for any
bounded domain D ⊂ R

3.



v1
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v3

volume(Π) = |detB |, where B = (v1, v2, v3). Note that the
parallelepiped Π is the image under LB of a unit cube whose
adjacent edges are e1, e2, e3.

The triple v1, v2, v3 obeys the right-hand rule. We say that
LB preserves orientation if it preserves the hand rule for any
basis. This is the case if and only if detB > 0.
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Parallelepiped is a prism.

(Volume) = (area of the base) × (height)

Area of the base = ‖y × z‖

Volume = |x · (y× z)|
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Tetrahedron is a pyramid.

(Volume) = 1
3 (area of the base) × (height)

Area of the base = 1
2
‖y × z‖

=⇒ Volume = 1
6 |x · (y × z)|



Riemann sums in two dimensions

Consider a closed coordinate rectangle
R = [a, b]× [c, d ] ⊂ R

2.

Definition. A Riemann sum of a function f : R → R with
respect to a partition P = {D1,D2, . . . ,Dn} of R generated
by samples tj ∈ Dj is a sum

S(f ,P, tj) =
∑n

j=1
f (tj) area(Dj).

The norm of the partition P is ‖P‖ = max1≤j≤n diam(Dj).

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
R and the limit I (f ) is called the integral of f over R .



Double integral

Closed coordinate rectangle R = [a, b]× [c , d ]

= {(x , y) ∈ R
2 | a ≤ x ≤ b, c ≤ y ≤ d}.

Notation:

∫∫

R

f dA or

∫∫

R

f (x , y) dx dy .

Theorem 1 If f is continuous on the closed
rectangle R, then f is integrable.

Theorem 2 A function f : R → R is Riemann

integrable on the rectangle R if and only if f is
bounded on R and continuous almost everywhere on
R (that is, the set of discontinuities of f has zero

area).



Fubini’s Theorem

Fubini’s Theorem allows us to reduce a multiple integral to a
repeated one-dimensional integral.

Theorem If a function f is integrable on R = [a, b]× [c, d ],
then
∫∫

R

f dA =

∫ b

a

(

∫ d

c

f (x , y ) dy
)

dx =

∫ d

c

(

∫ b

a

f (x , y ) dx
)

dy .

In particular, this implies that we can change the order of
integration in a repeated integral.

Corollary If a function g is integrable on [a, b] and a
function h is integrable on [c, d ], then the function
f (x , y ) = g(x)h(y ) is integrable on R = [a, b]× [c, d ] and

∫∫

R

g(x)h(y ) dx dy =

∫ b

a

g(x) dx ·

∫ d

c

h(y ) dy .



Integrals over general domains

Suppose f : D → R is a function defined on a
(Jordan) measurable set D ⊂ R

2. Since D is

bounded, it is contained in a rectangle R. To
define the integral of f over D, we extend the

function f to a function on R:

f ext(x , y) =

{

f (x , y) if (x , y) ∈ D,
0 if (x , y) /∈ D.

Definition.

∫∫

D

f dA is defined to be

∫∫

R

f ext dA.

In particular, area(D) =

∫∫

D

1 dA.



Integration as a linear operation

Theorem 1 If functions f , g are integrable on a

set D ⊂ R
2, then the sum f + g is also integrable

on D and
∫∫

D

(f + g) dA =

∫∫

D

f dA+

∫∫

D

g dA.

Theorem 2 If a function f is integrable on a set
D ⊂ R

2, then for each α ∈ R the scalar multiple
αf is also integrable on D and

∫∫

D

αf dA = α

∫∫

D

f dA.



More properties of integrals

Theorem 3 If functions f , g are integrable on a

set D ⊂ R
2, and f (x , y) ≤ g(x , y) for all

(x , y) ∈ D, then
∫∫

D

f dA ≤

∫∫

D

g dA.

Theorem 4 If a function f is integrable on sets
D1,D2 ⊂ R

2, then it is integrable on their union

D1 ∪ D2. Moreover, if the sets D1 and D2 are
disjoint up to a set of zero area, then

∫∫

D1∪D2

f dA =

∫∫

D1

f dA+

∫∫

D2

f dA.



Change of variables in a double integral

Theorem Let D ⊂ R
2 be a measurable domain

and f be an integrable function on D. If
T = (u, v) is a smooth coordinate mapping such

that T−1 is defined on D, then
∫∫

D

f (u, v) du dv

=

∫∫

T−1(D)

f
(

u(x , y), v(x , y)
)

∣

∣

∣

∣

det
∂(u, v)

∂(x , y)

∣

∣

∣

∣

dx dy .

In particular, the integral in the right-hand side is

well defined.



Problem Evaluate a double integral
∫∫

D

f (x , y ) dx dy

over a disc D bounded by the circle (x−x0)
2 + (y−y0)

2 = R2.

To evaluate the integral, we move the origin to (x0, y0) and
then switch to polar coordinates (r , φ). That is, we use the
substitution (x , y ) = T (r , φ) = (x0 + r cosφ, y0 + r sinφ).

Jacobian matrix: J =

(

∂x
∂r

∂x
∂φ

∂y

∂r

∂y

∂φ

)

=

(

cosφ −r sinφ
sinφ r cosφ

)

.

Then det J = r cos2φ+ r sin2φ = r . Hence
∫∫

D

f (x , y ) dx dy =

∫∫

T−1(D)

f (x0+r cosφ, y0+r sinφ) |det J| dr dφ

=

∫ 2π

0

∫ R

0

f (x0 + r cosφ, y0 + r sinφ) r dr dφ.



Problem Evaluate a double integral
∫∫

P

f (x , y ) dx dy

over a parallelogram P with vertices (−1,−1), (1, 0), (2, 2),
and (0, 1).

Adjacent edges of the parallelogram P are represented by
vectors v1 = (1, 0)− (−1,−1) = (2, 1) and
v2 = (0, 1)− (−1,−1) = (1, 2).

Consider a transformation L of the plane R
2 given by

L

(

u

v

)

=

(

2 1
1 2

)(

u

v

)

+

(

−1
−1

)

=

(

2u + v − 1
u + 2v − 1

)

(columns of the matrix are vectors v1 and v2). By
construction, L maps the unit square [0, 1]×[0, 1] onto the
parallelogram P. The Jacobian matrix J of L is the same at

any point: J =
∂(x , y )

∂(u, v )
=

(

2 1
1 2

)

.



Changing coordinates in the integral from (x , y) to
(u, v) so that

(x , y) = L(u, v) = (2u + v − 1, u + 2v − 1),

we obtain
∫∫

P

f (x , y) dx dy

=

∫∫

L−1(P)

f (2u+ v − 1, u+2v − 1) |det J | du dv

= 3

∫ 1

0

∫ 1

0

f (2u + v − 1, u + 2v − 1) du dv .



Triple integral

To integrate in R
3, volumes are used instead of areas in R

2.
Instead of coordinate rectangles, basic sets are coordinate
boxes (or bricks) B = [a1, b1]× [a2, b2]× [a3, b3] ⊂ R

3.
Then we can define an integral of a function f over a
measurable set D ⊂ R

3.

Notation:

∫∫∫

D

f dV or

∫∫∫

D

f (x , y , z) dx dy dz .

The properties of triple integrals are completely analogous to
those of double integrals. In particular, Fubini’s Theorem is
formulated as follows.

Theorem If a function f is integrable on a brick
B = [a1, b1]× [a2, b2]× [a3, b3] ⊂ R

3, then
∫∫∫

B

f dV =

∫ b1

a1

(
∫ b2

a2

(

∫ b3

a3

f (x , y , z) dz
)

dy

)

dx .



Problem Find the volume of a tetrahedron (i.e., triangular
pyramid) with vertices at points (0, 2, 1), (1, 0, 0), (2, 1, 2),
and (3, 1, 1).

Let P denote the pyramid. Let A0 = (1, 0, 0), A1 = (0, 2, 1),
A2 = (2, 1, 2) and A3 = (3, 1, 1). Three edges adjacent to A0

are represented by vectors

v1 =
−−→
A0A1 = (0, 2, 1)− (1, 0, 0) = (−1, 2, 1),

v2 =
−−→
A0A2 = (2, 1, 2)− (1, 0, 0) = (1, 1, 2),

v3 =
−−→
A0A3 = (3, 1, 1)− (1, 0, 0) = (2, 1, 1).

Consider a transformation T : R3 → R
3 given by

T





x

y

z



 =





−1 1 2
2 1 1
1 2 1









x

y

z



+





1
0
0



.

The matrix is M = (v1, v2, v3).





By construction, T (0, 0, 0) = A0, T (1, 0, 0) = A1,
T (0, 1, 0) = A2 and T (0, 0, 1) = A3. It follows that T−1(P)
is the triangular pyramid with vertices at points (0, 0, 0),
(1, 0, 0), (0, 1, 0) and (0, 0, 1).

Consider (0, 0, 1) to be the apex of the pyramid T−1(P).
Then the base is an isosceles right triangle with legs of length
1. Its area equals 1

2
. Besides, the edge (0, 0, 0)−(0, 0, 1) is

the altitude. Therefore the volume of the pyramid T−1(P)
equals 1

3
· 1
2
· 1 = 1

6
.

We have volume(T (D)) = |detM | volume(D) for any
domain D ⊂ R

3. In particular, volume(P) = |detM |/6.

detM =

∣

∣

∣

∣

∣

∣

−1 1 2
2 1 1
1 2 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−1 1 2
0 3 5
0 3 3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

−1 1 2
0 3 5
0 0 −2

∣

∣

∣

∣

∣

∣

= 6.

Thus volume(P) = 6 · 1
6
= 1.


