MATH 311
 Topics in Applied Mathematics I

Lecture 24:
Line integrals.
Conservative vector fields. Surfaces.

Path

Definition. A path in \mathbb{R}^{n} is a continuous function $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$.
Paths provide parametrizations for curves.
Length of the path \mathbf{x} is defined as
$L=\sup _{P} \sum_{j=1}^{k}\left\|\mathbf{x}\left(t_{j}\right)-\mathbf{x}\left(t_{j-1}\right)\right\|$ over all partitions
$P=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ of the interval $[a, b]$.
Theorem The length of a smooth path
$\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is $\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t$.
Arclength parameter: $s(t)=\int_{a}^{t}\left\|\mathbf{x}^{\prime}(\tau)\right\| d \tau$.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$
\mathcal{S}\left(f, P, \tau_{j}\right)=\sum_{j=1}^{k} f\left(\mathbf{x}\left(\tau_{j}\right)\right)\left(s\left(t_{j}\right)-s\left(t_{j-1}\right)\right),
$$

where $P=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ is a partition of $[a, b]$, $\tau_{j} \in\left[t_{j}, t_{j-1}\right]$ for $1 \leq j \leq k$, and s is the arclength parameter of the path \mathbf{x}.

Theorem Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a smooth path and f be a function defined on the image of this path. Then

$$
\int_{\mathbf{x}} f d s=\int_{a}^{b} f(\mathbf{x}(t))\left\|\mathbf{x}^{\prime}(t)\right\| d t .
$$

$d s$ is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}=\int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}^{\prime}(t) d t$.

Alternatively, the integral of \mathbf{F} over \mathbf{x} can be represented as the integral of a differential form

$$
\int_{\mathbf{x}} F_{1} d x_{1}+F_{2} d x_{2}+\cdots+F_{n} d x_{n}
$$

where $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ and $d x_{i}=x_{i}^{\prime}(t) d t$.

Applications of line integrals

- Mass of a wire

If f is the density on a wire C, then $\int_{C} f d s$ is the mass of C.

- Work of a force

If \mathbf{F} is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d \mathbf{s}$ is the work done by \mathbf{F} on a particle that moves along the path \mathbf{x}.

- Circulation of fluid

If \mathbf{F} is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve C is $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$.

- Flux of fluid

If \mathbf{F} is the velocity field of a planar fluid, then the flux of the fluid across a closed curve C is $\oint_{C} \mathbf{F} \cdot \mathbf{n} d s$, where \mathbf{n} is the outward unit normal vector to C.

Line integrals and reparametrization

Given a path $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$, we say that another path $\mathbf{y}:[c, d] \rightarrow \mathbb{R}^{n}$ is a reparametrization of \mathbf{x} if there exists a continuous invertible function $u:[c, d] \rightarrow[a, b]$ such that $\mathbf{y}(t)=\mathbf{x}(u(t))$ for all $t \in[c, d]$.
The reparametrization may be orientation-preserving (when u is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under reparametrizations.

Theorem 2 Any vector line integral is invariant under orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function over a simple curve and the integral of a vector field over a simple oriented curve.

Green's Theorem

Theorem Let $D \subset \mathbb{R}^{2}$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D. Then for any smooth vector field $\mathbf{F}=(M, N)$ on D,

$$
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{s}=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

or, equivalently,

$$
\oint_{\partial D} M d x+N d y=\iint_{D}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d x d y
$$

Examples

Consider vector fields $\mathbf{F}(x, y)=(-y, 0)$,
$\mathbf{G}(x, y)=(0, x)$, and $\mathbf{H}(x, y)=(y, x)$.
According to Green's Theorem,

$$
\begin{aligned}
& \oint_{\partial D}-y d x=\iint_{D} 1 d x d y=\operatorname{area}(D) \\
& \oint_{\partial D} x d y=\iint_{D} 1 d x d y=\operatorname{area}(D) \\
& \oint_{\partial D} y d x+x d y=\iint_{D} 0 d x d y=0 .
\end{aligned}
$$

Green's Theorem

Proof in the case $D=[0,1] \times[0,1]$ and $\mathbf{F}=(0, N)$:

$$
\int_{0}^{1} \frac{\partial N}{\partial x}(\xi, y) d \xi=N(1, y)-N(0, y)
$$

for any $y \in[0,1]$ due to the Fundamental Theorem of Calculus. Integrating this equality by y over $[0,1]$, we obtain

$$
\iint_{D} \frac{\partial N}{\partial x} d x d y=\int_{0}^{1} N(1, y) d y-\int_{0}^{1} N(0, y) d y
$$

Let $P_{1}=(0,0), P_{2}=(1,0), P_{3}=(1,1)$, and $P_{4}=(0,1)$.
The first integral in the right-hand side equals the vector integral of the field \mathbf{F} over the segment $P_{2} P_{3}$. The second integral equals the integral of \mathbf{F} over the segment $P_{1} P_{4}$. Also, the integral of \mathbf{F} over any horizontal segment is 0 . It follows that the entire right-hand side equals the integral of \mathbf{F} over the broken line $P_{1} P_{2} P_{3} P_{4} P_{1}$, that is, over ∂D.

Divergence Theorem

Theorem Let $D \subset \mathbb{R}^{2}$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D. Then for any smooth vector field \mathbf{F} on D,

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\iint_{D} \nabla \cdot \mathbf{F} d A .
$$

Proof: Let \mathcal{L} denote the rotation of the plane \mathbb{R}^{2} by 90° about the origin (counterclockwise). \mathcal{L} is a linear transformation preserving the dot product. Therefore

$$
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} d s=\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot \mathcal{L}(\mathbf{n}) d s .
$$

Note that $\mathcal{L}(\mathbf{n})$ is the unit tangent vector to ∂D. It follows that the right-hand side is the vector integral of $\mathcal{L}(\mathbf{F})$ over ∂D. If $\mathbf{F}=(M, N)$ then $\mathcal{L}(\mathbf{F})=(-N, M)$. By Green's Theorem, $\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot d \mathbf{s}=\oint_{\partial D}-N d x+M d y=\iint_{D}\left(\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y}\right) d x d y$.

Conservative vector fields

Let R be an open region in \mathbb{R}^{n} such that any two points in R can be connected by a continuous path. Such regions are called (arcwise) connected.

Definition. A continuous vector field $\mathbf{F}: R \rightarrow \mathbb{R}^{n}$ is called conservative if $\int_{C_{1}} \mathbf{F} \cdot d \mathbf{s}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{s}$
for any two simple, piecewise smooth, oriented curves $C_{1}, C_{2} \subset R$ with the same initial and terminal points.
An equivalent condition is that $\oint_{C} \mathbf{F} \cdot d \mathbf{s}=0$ for any piecewise smooth closed curve $C \subset R$.

Conservative vector fields

Theorem The vector field \mathbf{F} is conservative if and only if it is a gradient field, that is, $\mathbf{F}=\nabla f$ for some function $f: R \rightarrow \mathbb{R}$. If this is the case, then

$$
\int_{C} \mathbf{F} \cdot d \mathbf{s}=f(B)-f(A)
$$

for any piecewise smooth, oriented curve $C \subset R$ that connects the point A to the point B.

Remark. In the case \mathbf{F} is a force field, conservativity means that energy is conserved. Moreover, in this case the function f is the potential energy.

Test of conservativity

Theorem If a smooth field $\mathbf{F}=\left(F_{1}, F_{2}, \ldots, F_{n}\right)$ is conservative in a region $R \subset \mathbb{R}^{n}$, then the Jacobian matrix $\frac{\partial\left(F_{1}, F_{2}, \ldots, F_{n}\right)}{\partial\left(x_{1}, x_{2}, \ldots, x_{n}\right)}$ is symmetric everywhere in R, that is,

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}} \text { for } i \neq j
$$

Indeed, if the field \mathbf{F} is conservative, then $\mathbf{F}=\nabla f$ for some smooth function $f: R \rightarrow \mathbb{R}$. It follows that the Jacobian matrix of \mathbf{F} is the Hessian matrix of f, that is, the matrix of second-order partial derivatives: $\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$.

Remark. The converse of the theorem holds provided that the region R is simply-connected, which means that any closed path in R can be continuously shrunk within R to a point.

Finding scalar potential

Example. $\mathbf{F}(x, y)=\left(2 x y^{3}+3 y \cos 3 x, 3 x^{2} y^{2}+\sin 3 x\right)$.
The vector field \mathbf{F} is conservative if $\partial F_{1} / \partial y=\partial F_{2} / \partial x$.
$\frac{\partial F_{1}}{\partial y}=6 x y^{2}+3 \cos 3 x, \frac{\partial F_{2}}{\partial x}=6 x y^{2}+3 \cos 3 x$.
Thus $\mathbf{F}=\nabla f$ for some function f (scalar potential of \mathbf{F}), that is, $\frac{\partial f}{\partial x}=2 x y^{3}+3 y \cos 3 x, \quad \frac{\partial f}{\partial y}=3 x^{2} y^{2}+\sin 3 x$.
Integrating the second equality by y, we get
$f(x, y)=\int\left(3 x^{2} y^{2}+\sin 3 x\right) d y=x^{2} y^{3}+y \sin 3 x+g(x)$.
Substituting this into the first equality, we obtain that $2 x y^{3}+3 y \cos 3 x+g^{\prime}(x)=2 x y^{3}+3 y \cos 3 x$. Hence $g^{\prime}(x)=0$ so that $g(x)=c$, a constant. Then $f(x, y)=x^{2} y^{3}+y \sin 3 x+c$.

Surface

Suppose D_{1} and D_{2} are domains in \mathbb{R}^{3} and $\mathbf{T}: D_{1} \rightarrow D_{2}$ is an invertible map such that both \mathbf{T} and \mathbf{T}^{-1} are smooth. Then we say that \mathbf{T} defines curvilinear coordinates in D_{1}.

Definition. A nonempty set $S \subset \mathbb{R}^{3}$ is called a smooth surface if for every point $\mathbf{p} \in S$ there exist curvilinear coordinates $\mathbf{T}: D_{1} \rightarrow D_{2}$ in a neighborhood of \mathbf{p} such that $\mathbf{T}(\mathbf{p})=\mathbf{0}$ and either $\mathbf{T}\left(S \cap D_{1}\right)=\left\{(x, y, z) \in D_{2} \mid z=0\right\}$ or $\mathbf{T}\left(S \cap D_{1}\right)=\left\{(x, y, z) \in D_{2} \mid z=0, y \geq 0\right\}$. In the first case, \mathbf{p} is called an interior point of the surface S, in the second case, \mathbf{p} is called a boundary point of S.
The set of all boundary points of the surface S is called the boundary of S and denoted ∂S.
A smooth surface S is called complete if for any convergent sequence of points from S, the limit belongs to S as well. A complete surface with no boundary points is called closed.

Parametrized surfaces

Definition. Let $D \subset \mathbb{R}^{2}$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is called a parametrized surface. The image $\mathbf{X}(D)$ is called the underlying surface.
The parametrized surface is smooth if \mathbf{X} is smooth and, moreover, the vectors $\frac{\partial \mathbf{X}}{\partial s}\left(s_{0}, t_{0}\right)$ and $\frac{\partial \mathbf{X}}{\partial t}\left(s_{0}, t_{0}\right)$ are linearly independent for all $\left(s_{0}, t_{0}\right) \in D$. If this is the case, then the plane in \mathbb{R}^{3} through the point $\mathbf{X}\left(s_{0}, t_{0}\right)$ parallel to vectors $\frac{\partial \mathbf{X}}{\partial s}\left(s_{0}, t_{0}\right)$ and $\frac{\partial \mathbf{X}}{\partial t}\left(s_{0}, t_{0}\right)$ is called the tangent plane to $\mathbf{X}(D)$ at $\mathbf{X}\left(s_{0}, t_{0}\right)$.

Example. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function and consider a level set $P=\{(x, y, z): f(x, y, z)=c\}, c \in \mathbb{R}$. If $\nabla f \neq \mathbf{0}$ at some point $p \in P$, then near that point P is the underlying surface of a parametrized surface. Moreover, the gradient $(\nabla f)(p)$ is orthogonal to the tangent plane at p.

Plane in space

Consider a map $\mathbf{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{X}\binom{s}{t}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)+\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)\binom{s}{t}
$$

Partial derivatives $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$ are constant, namely, they are columns of the matrix $A=\left(a_{i j}\right)$. Assume that the columns are linearly independent. Then \mathbf{X} is a parametrized surface. The underlying surface is a plane Π. The tangent plane at every point is Π itself.
For a measurable set $D \subset \mathbb{R}^{2}$, the image $\mathbf{X}(D)$ is measurable in the plane Π. Moreover, area $(\mathbf{X}(D))=\alpha$ area (D) for some fixed scalar α. To determine α, consider the unit square $Q=[0,1] \times[0,1]$. The image $\mathbf{X}(Q)$ is a parallelogram with adjacent sides represented by vectors $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$. We obtain that $\alpha=\operatorname{area}(\mathbf{X}(Q))=\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\|$.

