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Lecture 24:

Line integrals.
Conservative vector fields.

Surfaces.



Path

Definition. A path in R
n is a continuous function

x : [a, b] → R
n.

Paths provide parametrizations for curves.

Length of the path x is defined as
L = supP

∑k
j=1

‖x(tj)− x(tj−1)‖ over all partitions

P = {t0, t1, . . . , tk} of the interval [a, b].

Theorem The length of a smooth path

x : [a, b] → R
n is

∫ b

a

‖x′(t)‖ dt.

Arclength parameter: s(t) =

∫ t

a

‖x′(τ)‖ dτ .





Scalar line integral

Scalar line integral is an integral of a scalar function f over a
path x : [a, b] → R

n of finite length relative to the arclength.
It is defined as a limit of Riemann sums

S(f ,P, τj) =
∑k

j=1

f (x(τj))
(

s(tj)− s(tj−1)
)

,

where P = {t0, t1, . . . , tk} is a partition of [a, b],
τj ∈ [tj , tj−1] for 1 ≤ j ≤ k, and s is the arclength parameter
of the path x.

Theorem Let x : [a, b] → R
n be a smooth path and f be a

function defined on the image of this path. Then
∫

x

f ds =

∫ b

a

f (x(t)) ‖x′(t)‖ dt.

ds is referred to as the arclength element.



Vector line integral

Vector line integral is an integral of a vector field

over a smooth path. It is a scalar.

Definition. Let x : [a, b] → R
n be a smooth path

and F be a vector field defined on the image of this

path. Then

∫

x

F · ds =

∫ b

a

F(x(t)) · x′(t) dt.

Alternatively, the integral of F over x can be

represented as the integral of a differential form
∫

x

F1 dx1 + F2 dx2 + · · ·+ Fn dxn,

where F = (F1, F2, . . . , Fn) and dxi = x ′i (t) dt.



Applications of line integrals

• Mass of a wire

If f is the density on a wire C , then
∫

C
f ds is the mass of C .

• Work of a force

If F is a force field, then
∫

x
F · ds is the work done by F on a

particle that moves along the path x.

• Circulation of fluid

If F is the velocity field of a planar fluid, then the circulation
of the fluid across a closed curve C is

∮

C
F · ds.

• Flux of fluid

If F is the velocity field of a planar fluid, then the flux of the
fluid across a closed curve C is

∮

C
F · n ds, where n is the

outward unit normal vector to C .



Line integrals and reparametrization

Given a path x : [a, b] → R
n, we say that another path

y : [c, d ] → R
n is a reparametrization of x if there exists a

continuous invertible function u : [c, d ] → [a, b] such that
y(t) = x(u(t)) for all t ∈ [c, d ].

The reparametrization may be orientation-preserving (when u

is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under
reparametrizations.

Theorem 2 Any vector line integral is invariant under
orientation-preserving reparametrizations and changes its sign
under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function
over a simple curve and the integral of a vector field over a
simple oriented curve.



Green’s Theorem

Theorem Let D ⊂ R
2 be a closed, bounded

region with piecewise smooth boundary ∂D oriented
so that D is on the left as one traverses ∂D. Then
for any smooth vector field F = (M ,N) on D,

∮

∂D

F · ds =

∫∫

D

(

∂N

∂x
−

∂M

∂y

)

dx dy

or, equivalently,
∮

∂D

M dx + N dy =

∫∫

D

(

∂N

∂x
−

∂M

∂y

)

dx dy .



Examples

Consider vector fields F(x , y) = (−y , 0),

G(x , y) = (0, x), and H(x , y) = (y , x).

According to Green’s Theorem,
∮

∂D

−y dx =

∫∫

D

1 dx dy = area(D),

∮

∂D

x dy =

∫∫

D

1 dx dy = area(D),

∮

∂D

y dx + x dy =

∫∫

D

0 dx dy = 0.



Green’s Theorem

Proof in the case D = [0, 1]× [0, 1] and F = (0,N):
∫

1

0

∂N

∂x
(ξ, y ) dξ = N(1, y )− N(0, y )

for any y ∈ [0, 1] due to the Fundamental Theorem of
Calculus. Integrating this equality by y over [0, 1], we obtain

∫∫

D

∂N

∂x
dx dy =

∫

1

0

N(1, y ) dy −

∫

1

0

N(0, y ) dy .

Let P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1).
The first integral in the right-hand side equals the vector
integral of the field F over the segment P2P3. The second
integral equals the integral of F over the segment P1P4. Also,
the integral of F over any horizontal segment is 0. It follows
that the entire right-hand side equals the integral of F over
the broken line P1P2P3P4P1, that is, over ∂D.





Divergence Theorem

Theorem Let D ⊂ R
2 be a closed, bounded region with

piecewise smooth boundary ∂D oriented so that D is on the
left as one traverses ∂D. Then for any smooth vector field F
on D,

∮

∂D

F · n ds =

∫∫

D

∇ · F dA.

Proof: Let L denote the rotation of the plane R
2 by 90o

about the origin (counterclockwise). L is a linear
transformation preserving the dot product. Therefore

∮

∂D
F · n ds =

∮

∂D
L(F) · L(n) ds.

Note that L(n) is the unit tangent vector to ∂D. It follows
that the right-hand side is the vector integral of L(F) over ∂D.
If F = (M ,N) then L(F) = (−N,M). By Green’s Theorem,
∮

∂D

L(F) · ds =

∮

∂D

−N dx +M dy =

∫∫

D

(

∂M

∂x
+

∂N

∂y

)

dx dy .



Conservative vector fields

Let R be an open region in R
n such that any two

points in R can be connected by a continuous path.
Such regions are called (arcwise) connected.

Definition. A continuous vector field F : R → R
n

is called conservative if

∫

C1

F · ds =

∫

C2

F · ds

for any two simple, piecewise smooth, oriented

curves C1,C2 ⊂ R with the same initial and
terminal points.

An equivalent condition is that

∮

C

F · ds = 0

for any piecewise smooth closed curve C ⊂ R.



Conservative vector fields

Theorem The vector field F is conservative if and
only if it is a gradient field, that is, F = ∇f for
some function f : R → R. If this is the case, then

∫

C

F · ds = f (B)− f (A)

for any piecewise smooth, oriented curve C ⊂ R

that connects the point A to the point B .

Remark. In the case F is a force field, conservativity
means that energy is conserved. Moreover, in this

case the function f is the potential energy.



Test of conservativity

Theorem If a smooth field F = (F1, F2, . . . , Fn) is
conservative in a region R ⊂ R

n, then the Jacobian matrix

∂(F1, F2, . . . , Fn)

∂(x1, x2, . . . , xn)
is symmetric everywhere in R , that is,

∂Fi

∂xj
=

∂Fj

∂xi
for i 6= j .

Indeed, if the field F is conservative, then F = ∇f for some
smooth function f : R → R. It follows that the Jacobian
matrix of F is the Hessian matrix of f , that is, the matrix of

second-order partial derivatives:
∂Fi

∂xj
=

∂2f

∂xj ∂xi
.

Remark. The converse of the theorem holds provided that the
region R is simply-connected, which means that any closed
path in R can be continuously shrunk within R to a point.



Finding scalar potential

Example. F(x , y ) = (2xy 3 + 3y cos 3x , 3x2y 2 + sin 3x).

The vector field F is conservative if ∂F1/∂y = ∂F2/∂x .

∂F1

∂y
= 6xy 2 + 3 cos 3x ,

∂F2

∂x
= 6xy 2 + 3 cos 3x .

Thus F = ∇f for some function f (scalar potential of F),

that is,
∂f

∂x
= 2xy 3 + 3y cos 3x ,

∂f

∂y
= 3x2y 2 + sin 3x .

Integrating the second equality by y , we get

f (x , y ) =

∫

(3x2y 2 + sin 3x) dy = x2y 3 + y sin 3x + g(x).

Substituting this into the first equality, we obtain that
2xy 3 + 3y cos 3x + g ′(x) = 2xy 3 + 3y cos 3x . Hence
g ′(x) = 0 so that g(x) = c, a constant. Then
f (x , y ) = x2y 3 + y sin 3x + c.



Surface

Suppose D1 and D2 are domains in R
3 and T : D1 → D2 is an

invertible map such that both T and T−1 are smooth. Then
we say that T defines curvilinear coordinates in D1.

Definition. A nonempty set S ⊂ R
3 is called a smooth

surface if for every point p ∈ S there exist curvilinear
coordinates T : D1 → D2 in a neighborhood of p such that
T(p) = 0 and either T(S ∩ D1) = {(x , y , z) ∈ D2 | z = 0} or
T(S ∩ D1) = {(x , y , z) ∈ D2 | z = 0, y ≥ 0}. In the first
case, p is called an interior point of the surface S , in the
second case, p is called a boundary point of S .

The set of all boundary points of the surface S is called the
boundary of S and denoted ∂S .

A smooth surface S is called complete if for any convergent
sequence of points from S , the limit belongs to S as well. A
complete surface with no boundary points is called closed.





Parametrized surfaces

Definition. Let D ⊂ R
2 be a connected, bounded region.

A continuous one-to-one map X : D → R
3 is called a

parametrized surface. The image X(D) is called the
underlying surface.

The parametrized surface is smooth if X is smooth and,
moreover, the vectors ∂X

∂s
(s0, t0) and ∂X

∂t
(s0, t0) are linearly

independent for all (s0, t0) ∈ D. If this is the case, then the
plane in R

3 through the point X(s0, t0) parallel to vectors
∂X
∂s
(s0, t0) and ∂X

∂t
(s0, t0) is called the tangent plane to

X(D) at X(s0, t0).

Example. Suppose f : R3 → R is a smooth function and
consider a level set P = {(x , y , z) : f (x , y , z) = c}, c ∈ R.
If ∇f 6= 0 at some point p ∈ P, then near that point P is
the underlying surface of a parametrized surface. Moreover,
the gradient (∇f )(p) is orthogonal to the tangent plane at p.



Plane in space

Consider a map X : R2 → R
3 given by

X

(

s

t

)

=





b1
b2
b3



+





a11 a12
a21 a22
a31 a32





(

s

t

)

.

Partial derivatives ∂X
∂s

and ∂X
∂t

are constant, namely, they are
columns of the matrix A = (aij). Assume that the columns
are linearly independent. Then X is a parametrized surface.
The underlying surface is a plane Π. The tangent plane at
every point is Π itself.

For a measurable set D ⊂ R
2, the image X(D) is measurable

in the plane Π. Moreover, area

(

X(D)
)

= α area(D) for
some fixed scalar α. To determine α, consider the unit square
Q = [0, 1]× [0, 1]. The image X(Q) is a parallelogram with
adjacent sides represented by vectors ∂X

∂s
and ∂X

∂t
. We obtain

that α = area

(

X(Q)
)

= ‖∂X
∂s

× ∂X
∂t
‖.


