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Lecture 24:
Line integrals.
Conservative vector fields.
Surfaces.



Path

Definition. A path in R" is a continuous function
x : [a, b] — R".

Paths provide parametrizations for curves.

Length of the path x is defined as
L = supp Zj-(:l 1x(tj) — x(tj_1)|| over all partitions
P = {ty, t1,..., tx} of the interval [a, b].

Theorem The length of a smooth path
b
x: [a,b] = R" is / IX(8)] dt.

t
Arclength parameter: s(t) :/ X' (7)|| d7.
a
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Scalar line integral

Scalar line integral is an integral of a scalar function f over a
path x : [a, b] — R" of finite length relative to the arclength.
It is defined as a limit of Riemann sums

S(F,P.) = Y Fx(m) (s(t) — s(5-1).

where P = {ty, t1,..., tx} is a partition of [a, b],
€ [t;, ti_1] for 1 < j < k, and s is the arclength parameter
of the path x.

Theorem Let x: [a, b] — R" be a smooth path and f be a
function defined on the image of this path. Then

/fds_/ ) [1%(2)]] dt.

ds is referred to as the arclength element.



Vector line integral

Vector line integral is an integral of a vector field
over a smooth path. It is a scalar.

Definition. Let x : [a, b] — R" be a smooth path
and F be a vector field defined on the image of this

path. Then /F - ds = /b F(x(t))-x'(t) dt.

Alternatively, the integral of F over x can be
represented as the integral of a differential form

/FldX1+F2dX2+"'+Fnan,

X

where F = (F, F,, ..., F,) and dx; = x/(t) dt.



Applications of line integrals

e Mass of a wire
If f is the density on a wire C, then [.f ds is the mass of C.

e Work of a force

If F is a force field, then fx F - ds is the work done by F on a
particle that moves along the path x.

e Circulation of fluid

If F is the velocity field of a planar fluid, then the circulation
of the fluid across a closed curve C is fc F - ds.

o Flux of fluid

If F is the velocity field of a planar fluid, then the flux of the
fluid across a closed curve C is fc F - nds, where n is the
outward unit normal vector to C.



Line integrals and reparametrization

Given a path x: [a, b] — R”, we say that another path

y : [c,d] — R" is a reparametrization of x if there exists a
continuous invertible function v : [c,d] — [a, b] such that
y(t) = x(u(t)) for all t € [c,d].

The reparametrization may be orientation-preserving (when u
is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under
reparametrizations.

Theorem 2 Any vector line integral is invariant under
orientation-preserving reparametrizations and changes its sign
under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function
over a simple curve and the integral of a vector field over a
simple oriented curve.



Green’s Theorem

Theorem Let D C R? be a closed, bounded
region with piecewise smooth boundary 9D oriented
so that D is on the left as one traverses 0D. Then
for any smooth vector field F = (M, N) on D,

oN oM
F-ds:// (———)dxd
7{90 p \ Ox dy 4

or, equivalently,

de+Ndy:// (a—N—a—M>dxdy.
oD D Ox 8)/



Examples

Consider vector fields F(x,y) = (—y,0),
G(x,y) = (0,x), and H(x,y) = (y,x).

According to Green's Theorem,

j{—ydx: //1dxdy:area(D),
oD D

% xdy://1dxdy:area(D),
oD D

% ydx+xdy://0dxdy:O.
oD D



Green’s Theorem

Proof in the case D =[0,1] x [0,1] and F = (0, N):

OaN(e y)de = N(Ly) — N(0, y)

for any y € [0,1] due to the Fundamental Theorem of
Calculus. Integrating this equality by y over [0, 1], we obtain

// d dy — /OIN(l,y)dy—/OlN(O,y)dy.

Let Pl = (0,0), P2 = (1,0), P3 = (1,1), and P4 = (0,1)
The first integral in the right-hand side equals the vector
integral of the field F over the segment P,P;. The second
integral equals the integral of F over the segment P;P,. Also,
the integral of F over any horizontal segment is 0. It follows
that the entire right-hand side equals the integral of F over
the broken line P;P>P3;P,P;, that is, over 9D.
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Divergence Theorem

Theorem Let D C R? be a closed, bounded region with
piecewise smooth boundary 0D oriented so that D is on the
left as one traverses 0D. Then for any smooth vector field F

on D,
jl{ F-nds://V-FdA.
oD D

Proof: Let L denote the rotation of the plane R? by 90°
about the origin (counterclockwise). L is a linear
transformation preserving the dot product. Therefore

$,oF-nds= ¢, L(F)-L(n)ds.
Note that £(n) is the unit tangent vector to dD. It follows

that the right-hand side is the vector integral of £(F) over 0D.
If F=(M,N) then L(F)=(—N,M). By Green's Theorem,

)-
L’()ds—j{ —Ndx+ Mdy = / <8—M+86—N)dxdy.
oD

oD



Conservative vector fields

Let R be an open region in R” such that any two
points in R can be connected by a continuous path.
Such regions are called (arcwise) connected.

Definition. A continuous vector field F: R — R”
is called conservative if / F.-ds= / F-ds
G G

for any two simple, piecewise smooth, oriented
curves (C;, C; C R with the same initial and
terminal points.

An equivalent condition is that j{ F-ds=0
C

for any piecewise smooth closed curve C C R.



Conservative vector fields

Theorem The vector field F is conservative if and
only if it is a gradient field, that is, F = Vf for
some function f : R — R. If this is the case, then

/F-ds: F(B) — f(A)
C

for any piecewise smooth, oriented curve C C R
that connects the point A to the point B.

Remark. In the case F is a force field, conservativity
means that energy is conserved. Moreover, in this
case the function f is the potential energy.



Test of conservativity

Theorem If a smooth field F = (Fy, F, ..., F,) is

conservative in a region R C R", then the Jacobian matrix
O(Fi, Fa, ..., Fy)
O(X1, X2y« -+, Xn)

is symmetric everywhere in R, that is,
OF;  OF;
aXJ - (9x,-

for i #j.

Indeed, if the field F is conservative, then F = Vf for some

smooth function 7 : R — R. It follows that the Jacobian

matrix of F is the Hessian matrix of f, that is, the matrix of
oF; O*f

Ox;  Ox; 0x;

second-order partial derivatives:

Remark. The converse of the theorem holds provided that the
region R is simply-connected, which means that any closed
path in R can be continuously shrunk within R to a point.



Finding scalar potential
Example. F(x,y) = (2xy® + 3y cos 3x, 3x%y? + sin 3x).

The vector field F is conservative if 0F;/Jy = 0F,/0x.
F F,
OF _ 6xy? + 3 cos 3x, OF; _ 6xy? + 3 cos 3x.
dy Ox
Thus F = Vf for some function f (scalar potential of F),

f f
that is, or _ 2xy> + 3y cos 3x, or _ 3x2y? + sin 3x.
Ox dy

Integrating the second equality by y, we get
f(x,y)= /(3x2y2 +sin3x) dy = x*y> + ysin 3x + g(x).

Substituting this into the first equality, we obtain that
2xy> + 3y cos3x + g'(x) = 2xy® + 3y cos3x. Hence
g'(x) =0 so that g(x) = ¢, a constant. Then
f(x,y) = x2y® + ysin3x + c.



Surface

Suppose D; and D, are domains in R3and T: D; — D, is an
invertible map such that both T and T~! are smooth. Then
we say that T defines curvilinear coordinates in D;.

Definition. A nonempty set S C R3 is called a smooth
surface if for every point p € S there exist curvilinear
coordinates T : D; — D, in a neighborhood of p such that
T(p) =0 and either T(SND;) ={(x,y,z) € D, | z=0} or
T(SNDy) ={(x,y,z) € D, | z=10, y > 0}. In the first
case, p is called an interior point of the surface S, in the
second case, p is called a boundary point of S.

The set of all boundary points of the surface S is called the
boundary of S and denoted 0S.

A smooth surface S is called complete if for any convergent
sequence of points from S, the limit belongs to S as well. A
complete surface with no boundary points is called closed.






Parametrized surfaces

Definition. Let D C R? be a connected, bounded region.
A continuous one-to-one map X : D — R3 is called a
parametrized surface. The image X(D) is called the
underlying surface.

The parametrized surface is smooth if X is smooth and,
moreover, the vectors 2X(sy, o) and ZX(so, to) are linearly
independent for all (sp, tg) € D. If this is the case, then the
plane in R3 through the point X(sp, ty) parallel to vectors
9X (s0, 1) and ZX(sp, to) is called the tangent plane to
X(D) at X(So, 1.'0).

Example. Suppose f : R — R is a smooth function and
consider a level set P = {(x,y,z): f(x,y,z) =c}, c€R.
If Vf # 0 at some point p € P, then near that point P is
the underlying surface of a parametrized surface. Moreover,
the gradient (Vf)(p) is orthogonal to the tangent plane at p.



Plane in space
Consider a map X : R?2 — R3 given by

s b1 d11 412 s
X =\|b |+ | a1 ax .
t t
bs d31 a3

Partial derivatives g—’: and %—’: are constant, namely, they are

columns of the matrix A = (a;). Assume that the columns
are linearly independent. Then X is a parametrized surface.
The underlying surface is a plane . The tangent plane at
every point is I1 itself.

For a measurable set D C R?, the image X(D) is measurable

in the plane M. Moreover, area(X(D)) = aarea(D) for

some fixed scalar ae. To determine «, consider the unit square
=[0,1] x [0,1]. The image X(Q) is a parallelogram with

adjacent sides represented by vectors ?9_)5( and %—’:. We obtain

that a = area(X(Q)) = ’ 55 X —”



