MATH 311 Topics in Applied Mathematics I

Lecture 24:

Line integrals. Conservative vector fields.

Surfaces.

Path

Definition. A **path** in \mathbb{R}^n is a continuous function $\mathbf{x}:[a,b]\to\mathbb{R}^n$.

Paths provide parametrizations for curves.

Length of the path \mathbf{x} is defined as $L = \sup_{P} \sum_{j=1}^{k} \|\mathbf{x}(t_j) - \mathbf{x}(t_{j-1})\|$ over all partitions $P = \{t_0, t_1, \dots, t_k\}$ of the interval [a, b].

Theorem The length of a smooth path $\mathbf{x}:[a,b]\to\mathbb{R}^n$ is $\int^b\|\mathbf{x}'(t)\|\,dt$.

Arclength parameter: $s(t) = \int_{0}^{t} \|\mathbf{x}'(\tau)\| d\tau$.

Scalar line integral

Scalar line integral is an integral of a scalar function f over a path $\mathbf{x}:[a,b]\to\mathbb{R}^n$ of finite length relative to the arclength. It is defined as a limit of Riemann sums

$$S(f, P, \tau_j) = \sum_{j=1}^k f(\mathbf{x}(\tau_j)) \left(s(t_j) - s(t_{j-1}) \right),$$

where $P = \{t_0, t_1, \dots, t_k\}$ is a partition of [a, b], $\tau_j \in [t_j, t_{j-1}]$ for $1 \le j \le k$, and s is the arclength parameter of the path \mathbf{x} .

Theorem Let $\mathbf{x}:[a,b]\to\mathbb{R}^n$ be a smooth path and f be a function defined on the image of this path. Then

$$\int_{\mathbf{x}} f \, ds = \int_{a}^{b} f(\mathbf{x}(t)) \| \mathbf{x}'(t) \| \, dt.$$

ds is referred to as the arclength element.

Vector line integral

Vector line integral is an integral of a vector field over a smooth path. It is a scalar.

Definition. Let $\mathbf{x} : [a, b] \to \mathbb{R}^n$ be a smooth path and \mathbf{F} be a vector field defined on the image of this path. Then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{x}(t)) \cdot \mathbf{x}'(t) dt$.

Alternatively, the integral of **F** over **x** can be represented as the integral of a **differential form**

$$\int_{\mathbf{x}} F_1 dx_1 + F_2 dx_2 + \cdots + F_n dx_n,$$

where $\mathbf{F} = (F_1, F_2, \dots, F_n)$ and $dx_i = x_i'(t) dt$.

Applications of line integrals

Mass of a wire

If f is the density on a wire C, then $\int_C f \, ds$ is the mass of C.

• Work of a force

If **F** is a force field, then $\int_{\mathbf{x}} \mathbf{F} \cdot d\mathbf{s}$ is the work done by **F** on a particle that moves along the path \mathbf{x} .

• Circulation of fluid

If **F** is the velocity field of a planar fluid, then the circulation of the fluid across a closed curve C is $\oint_C \mathbf{F} \cdot d\mathbf{s}$.

Flux of fluid

If **F** is the velocity field of a planar fluid, then the flux of the fluid across a closed curve C is $\oint_C \mathbf{F} \cdot \mathbf{n} \, ds$, where **n** is the outward unit normal vector to C.

Line integrals and reparametrization

Given a path $\mathbf{x}:[a,b]\to\mathbb{R}^n$, we say that another path $\mathbf{y}:[c,d]\to\mathbb{R}^n$ is a **reparametrization** of \mathbf{x} if there exists a continuous invertible function $u:[c,d]\to[a,b]$ such that $\mathbf{y}(t)=\mathbf{x}(u(t))$ for all $t\in[c,d]$.

The reparametrization may be orientation-preserving (when u is increasing) or orientation-reversing (when u is decreasing).

Theorem 1 Any scalar line integral is invariant under reparametrizations.

Theorem 2 Any vector line integral is invariant under orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the integral of a function over a simple curve and the integral of a vector field over a simple oriented curve.

Green's Theorem

Theorem Let $D \subset \mathbb{R}^2$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D . Then for any smooth vector field $\mathbf{F} = (M, N)$ on D,

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy$$

or, equivalently,

$$\oint_{\partial D} M \, dx + N \, dy = \iint_{D} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx \, dy.$$

Examples

Consider vector fields $\mathbf{F}(x,y) = (-y,0)$, $\mathbf{G}(x,y) = (0,x)$, and $\mathbf{H}(x,y) = (y,x)$.

According to Green's Theorem,

$$\oint_{\partial D} -y \, dx = \iint_{D} 1 \, dx \, dy = \text{area}(D),$$

$$\oint_{\partial D} x \, dy = \iint_{D} 1 \, dx \, dy = \text{area}(D),$$

$$\oint_{\partial D} y \, dx + x \, dy = \iint_{D} 0 \, dx \, dy = 0.$$

Green's Theorem

Proof in the case $D = [0,1] \times [0,1]$ and $\mathbf{F} = (0,N)$:

$$\int_0^1 \frac{\partial N}{\partial x}(\xi, y) d\xi = N(1, y) - N(0, y)$$

for any $y \in [0,1]$ due to the Fundamental Theorem of Calculus. Integrating this equality by y over [0,1], we obtain

$$\iint_D \frac{\partial N}{\partial x} dx dy = \int_0^1 N(1, y) dy - \int_0^1 N(0, y) dy.$$

Let $P_1=(0,0)$, $P_2=(1,0)$, $P_3=(1,1)$, and $P_4=(0,1)$. The first integral in the right-hand side equals the vector integral of the field ${\bf F}$ over the segment P_2P_3 . The second integral equals the integral of ${\bf F}$ over the segment P_1P_4 . Also, the integral of ${\bf F}$ over any horizontal segment is 0. It follows that the entire right-hand side equals the integral of ${\bf F}$ over the broken line $P_1P_2P_3P_4P_1$, that is, over ∂D .

Divergence Theorem

Theorem Let $D \subset \mathbb{R}^2$ be a closed, bounded region with piecewise smooth boundary ∂D oriented so that D is on the left as one traverses ∂D . Then for any smooth vector field \mathbf{F} on D,

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{D} \nabla \cdot \mathbf{F} \, dA.$$

Proof: Let \mathcal{L} denote the rotation of the plane \mathbb{R}^2 by 90° about the origin (counterclockwise). \mathcal{L} is a linear transformation preserving the dot product. Therefore

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot \mathcal{L}(\mathbf{n}) \, ds.$$

Note that $\mathcal{L}(\mathbf{n})$ is the unit tangent vector to ∂D . It follows that the right-hand side is the vector integral of $\mathcal{L}(\mathbf{F})$ over ∂D . If $\mathbf{F} = (M, N)$ then $\mathcal{L}(\mathbf{F}) = (-N, M)$. By Green's Theorem,

$$\oint_{\partial D} \mathcal{L}(\mathbf{F}) \cdot d\mathbf{s} = \oint_{\partial D} -N \, dx + M \, dy = \iint_{D} \left(\frac{\partial M}{\partial x} + \frac{\partial N}{\partial y} \right) \, dx \, dy.$$

Conservative vector fields

Let R be an open region in \mathbb{R}^n such that any two points in R can be connected by a continuous path. Such regions are called **(arcwise) connected**.

Definition. A continuous vector field $\mathbf{F}: R \to \mathbb{R}^n$ is called **conservative** if $\int_{C_1} \mathbf{F} \cdot d\mathbf{s} = \int_{C_2} \mathbf{F} \cdot d\mathbf{s}$

for any two simple, piecewise smooth, oriented curves $C_1, C_2 \subset R$ with the same initial and terminal points.

An equivalent condition is that $\oint_C \mathbf{F} \cdot d\mathbf{s} = 0$ for any piecewise smooth closed curve $C \subset R$.

Conservative vector fields

Theorem The vector field \mathbf{F} is conservative if and only if it is a gradient field, that is, $\mathbf{F} = \nabla f$ for some function $f: R \to \mathbb{R}$. If this is the case, then

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = f(B) - f(A)$$

for any piecewise smooth, oriented curve $C \subset R$ that connects the point A to the point B.

Remark. In the case \mathbf{F} is a force field, conservativity means that energy is conserved. Moreover, in this case the function f is the potential energy.

Test of conservativity

Theorem If a smooth field $\mathbf{F} = (F_1, F_2, \dots, F_n)$ is conservative in a region $R \subset \mathbb{R}^n$, then the Jacobian matrix $\frac{\partial (F_1, F_2, \dots, F_n)}{\partial (x_1, x_2, \dots, x_n)}$ is symmetric everywhere in R, that is, $\frac{\partial F_i}{\partial x_i} = \frac{\partial F_j}{\partial x_i}$ for $i \neq j$.

Indeed, if the field \mathbf{F} is conservative, then $\mathbf{F} = \nabla f$ for some smooth function $f: R \to \mathbb{R}$. It follows that the Jacobian matrix of \mathbf{F} is the **Hessian matrix** of f, that is, the matrix of second-order partial derivatives: $\frac{\partial F_i}{\partial x_j} = \frac{\partial^2 f}{\partial x_j \, \partial x_i}$.

Remark. The converse of the theorem holds provided that the region R is **simply-connected**, which means that any closed path in R can be continuously shrunk within R to a point.

Finding scalar potential

Example.
$$\mathbf{F}(x, y) = (2xy^3 + 3y\cos 3x, 3x^2y^2 + \sin 3x).$$

The vector field **F** is conservative if $\partial F_1/\partial y = \partial F_2/\partial x$.

$$\frac{\partial F_1}{\partial y} = 6xy^2 + 3\cos 3x, \quad \frac{\partial F_2}{\partial x} = 6xy^2 + 3\cos 3x.$$

Thus $\mathbf{F} = \nabla f$ for some function f (scalar potential of \mathbf{F}),

that is,
$$\frac{\partial f}{\partial x} = 2xy^3 + 3y\cos 3x$$
, $\frac{\partial f}{\partial y} = 3x^2y^2 + \sin 3x$.

Integrating the second equality by y, we get

$$f(x,y) = \int (3x^2y^2 + \sin 3x) \, dy = x^2y^3 + y \sin 3x + g(x).$$

Substituting this into the first equality, we obtain that $2xy^3 + 3y\cos 3x + g'(x) = 2xy^3 + 3y\cos 3x$. Hence g'(x) = 0 so that g(x) = c, a constant. Then $f(x,y) = x^2y^3 + y\sin 3x + c$.

Surface

Suppose D_1 and D_2 are domains in \mathbb{R}^3 and $\mathbf{T}:D_1\to D_2$ is an invertible map such that both \mathbf{T} and \mathbf{T}^{-1} are smooth. Then we say that \mathbf{T} defines **curvilinear coordinates** in D_1 .

Definition. A nonempty set $S \subset \mathbb{R}^3$ is called a **smooth** surface if for every point $\mathbf{p} \in S$ there exist curvilinear coordinates $\mathbf{T}: D_1 \to D_2$ in a neighborhood of \mathbf{p} such that $\mathbf{T}(\mathbf{p}) = \mathbf{0}$ and either $\mathbf{T}(S \cap D_1) = \{(x, y, z) \in D_2 \mid z = 0\}$ or $\mathbf{T}(S \cap D_1) = \{(x, y, z) \in D_2 \mid z = 0, y \ge 0\}$. In the first case, \mathbf{p} is called an **interior point** of the surface S, in the second case, \mathbf{p} is called a **boundary point** of S.

The set of all boundary points of the surface S is called the **boundary** of S and denoted ∂S .

A smooth surface S is called **complete** if for any convergent sequence of points from S, the limit belongs to S as well. A complete surface with no boundary points is called **closed**.

Parametrized surfaces

Definition. Let $D \subset \mathbb{R}^2$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}:D\to\mathbb{R}^3$ is called a **parametrized surface**. The image $\mathbf{X}(D)$ is called the **underlying surface**.

The parametrized surface is **smooth** if **X** is smooth and, moreover, the vectors $\frac{\partial \mathbf{X}}{\partial s}(s_0,t_0)$ and $\frac{\partial \mathbf{X}}{\partial t}(s_0,t_0)$ are linearly independent for all $(s_0,t_0)\in D$. If this is the case, then the plane in \mathbb{R}^3 through the point $\mathbf{X}(s_0,t_0)$ parallel to vectors $\frac{\partial \mathbf{X}}{\partial s}(s_0,t_0)$ and $\frac{\partial \mathbf{X}}{\partial t}(s_0,t_0)$ is called the **tangent plane** to $\mathbf{X}(D)$ at $\mathbf{X}(s_0,t_0)$.

Example. Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a smooth function and consider a **level set** $P = \{(x, y, z) : f(x, y, z) = c\}, c \in \mathbb{R}$. If $\nabla f \neq \mathbf{0}$ at some point $p \in P$, then near that point P is the underlying surface of a parametrized surface. Moreover, the gradient $(\nabla f)(p)$ is orthogonal to the tangent plane at p.

Plane in space

Consider a map $\mathbf{X}: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\mathbf{X} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix}.$$

Partial derivatives $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$ are constant, namely, they are columns of the matrix $A=(a_{ij})$. Assume that the columns are linearly independent. Then \mathbf{X} is a parametrized surface. The underlying surface is a plane Π . The tangent plane at every point is Π itself.

For a measurable set $D \subset \mathbb{R}^2$, the image $\mathbf{X}(D)$ is measurable in the plane Π . Moreover, $\operatorname{area}(\mathbf{X}(D)) = \alpha \operatorname{area}(D)$ for some fixed scalar α . To determine α , consider the unit square $Q = [0,1] \times [0,1]$. The image $\mathbf{X}(Q)$ is a parallelogram with adjacent sides represented by vectors $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$. We obtain that $\alpha = \operatorname{area}(\mathbf{X}(Q)) = \|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\|$.