MATH 311
 Topics in Applied Mathematics I
 Lecture 25:
 Area of a surface. Surface integrals.

Surface

Parametrized surfaces

Definition. Let $D \subset \mathbb{R}^{2}$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ is called a parametrized surface. The image $\mathbf{X}(D)$ is called the underlying surface.
The parametrized surface is smooth if \mathbf{X} is smooth and, moreover, the vectors $\frac{\partial \mathbf{X}}{\partial s}\left(s_{0}, t_{0}\right)$ and $\frac{\partial \mathbf{X}}{\partial t}\left(s_{0}, t_{0}\right)$ are linearly independent for all $\left(s_{0}, t_{0}\right) \in D$. If this is the case, then the plane in \mathbb{R}^{3} through the point $\mathbf{X}\left(s_{0}, t_{0}\right)$ parallel to vectors $\frac{\partial \mathbf{X}}{\partial s}\left(s_{0}, t_{0}\right)$ and $\frac{\partial \mathbf{X}}{\partial t}\left(s_{0}, t_{0}\right)$ is called the tangent plane to $\mathbf{X}(D)$ at $\mathbf{X}\left(s_{0}, t_{0}\right)$.

Example. Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a smooth function and consider a level set $P=\{(x, y, z): f(x, y, z)=c\}, c \in \mathbb{R}$. If $\nabla f \neq \mathbf{0}$ at some point $p \in P$, then near that point P is the underlying surface of a parametrized surface. Moreover, the gradient $(\nabla f)(p)$ is orthogonal to the tangent plane at p.

Plane in space

Consider a map $\mathbf{X}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{X}\binom{s}{t}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)+\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)\binom{s}{t}
$$

Partial derivatives $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$ are constant, namely, they are columns of the matrix $A=\left(a_{i j}\right)$. Assume that the columns are linearly independent. Then \mathbf{X} is a parametrized surface. The underlying surface is a plane Π. The tangent plane at every point is Π itself.
For a measurable set $D \subset \mathbb{R}^{2}$, the image $\mathbf{X}(D)$ is measurable in the plane Π. Moreover, area $(\mathbf{X}(D))=\alpha$ area (D) for some fixed scalar α. To determine α, consider the unit square $Q=[0,1] \times[0,1]$. The image $\mathbf{X}(Q)$ is a parallelogram with adjacent sides represented by vectors $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$. We obtain that $\alpha=\operatorname{area}(\mathbf{X}(Q))=\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\|$.

Area of a surface

Let P be a smooth surface parametrized by $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$.
Then the area of P is

$$
\operatorname{area}(P)=\iint_{D}\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\| d s d t .
$$

Suppose P is the graph of a smooth function $g: D \rightarrow \mathbb{R}$, i.e., P is given by $z=g(x, y)$. We have a natural parametrization $\mathbf{X}: D \rightarrow \mathbb{R}^{3}, \mathbf{X}(x, y)=(x, y, g(x, y))$. Then $\frac{\partial \mathbf{X}}{\partial x}=\left(1,0, g_{x}^{\prime}\right)$ and $\frac{\partial \mathbf{X}}{\partial y}=\left(0,1, g_{y}^{\prime}\right)$. Consequently,

$$
\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
1 & 0 & g_{x}^{\prime} \\
0 & 1 & g_{y}^{\prime}
\end{array}\right|=\left(-g_{x}^{\prime},-g_{y}^{\prime}, 1\right) .
$$

It follows that

$$
\operatorname{area}(P)=\iint_{D} \sqrt{1+\left|g_{x}^{\prime}\right|^{2}+\left|g_{y}^{\prime}\right|^{2}} d x d y
$$

Scalar surface integral

Scalar surface integral is an integral of a scalar function f over a parametrized surface $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ relative to the area element of the surface. It can be defined as a limit of Riemann sums

$$
\mathcal{S}\left(f, R, \tau_{j}\right)=\sum_{j=1}^{k} f\left(\mathbf{X}\left(\tau_{j}\right)\right) \text { area }\left(\mathbf{X}\left(D_{j}\right)\right)
$$

where $R=\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$ is a partition of D into small pieces and $\tau_{j} \in D_{j}$ for $1 \leq j \leq k$.

Theorem Let $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ be a smooth parametrized surface, where $D \subset \mathbb{R}^{2}$ is a bounded region. Then for any continuous function $f: \mathbf{X}(D) \rightarrow \mathbb{R}$,

$$
\iint_{\mathbf{X}} f d S=\iint_{D} f(\mathbf{X}(s, t))\left\|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\right\| d s d t
$$

Vector surface integral

Vector surface integral is an integral of a vector field over a smooth parametrized surface. It is a scalar.

Definition. Let $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ be a smooth parametrized surface, where $D \subset \mathbb{R}^{2}$ is a bounded region. Then for any continuous vector field $\mathbf{F}: \mathbf{X}(D) \rightarrow \mathbb{R}^{3}$, the vector integral of \mathbf{F} along \mathbf{X} is

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t
$$

where $\mathbf{N}=\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}$, a normal vector to the surface.
Equivalently, $\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}\left|\begin{array}{ccc}F_{1} & F_{2} & F_{3} \\ \frac{\partial X_{1}}{\partial s} & \frac{\partial X_{2}}{\partial s} & \frac{\partial X_{3}}{\partial s} \\ \frac{\partial X_{1}}{\partial t} & \frac{\partial X_{2}}{\partial t} & \frac{\partial X_{3}}{\partial t}\end{array}\right| d s d t$.

Applications of surface integrals

- Mass of a shell

If f is the density of a shell P, then $\iint_{P} f d S$ is the mass of P.

- Center of mass of a shell

If f is the density of a shell P, then

$$
\frac{\iint_{P} x f(x, y, z) d S}{\iint_{P} f d S}, \frac{\iint_{P} y f(x, y, z) d S}{\iint_{P} f d S}, \frac{\iint_{P} z f(x, y, z) d S}{\iint_{P} f d S}
$$

are coordinates of the center of mass of P.

- Flux of fluid

If \mathbf{F} is the velocity field of a fluid, then $\iint_{P} \mathbf{F} \cdot d \mathbf{S}$ is the flux of the fluid across the surface P.

Surface integrals and reparametrization

Given two smooth parametrized surfaces
$\mathbf{X}: D_{1} \rightarrow \mathbb{R}^{3}$ and $\mathbf{Y}: D_{2} \rightarrow \mathbb{R}^{3}$, we say that \mathbf{Y} is a smooth reparametrization of \mathbf{X} if there exists an invertible function $\mathbf{H}: D_{2} \rightarrow D_{1}$ such that $\mathbf{Y}=\mathbf{X} \circ \mathbf{H}$ and both \mathbf{H} and \mathbf{H}^{-1} are smooth.

Theorem Any scalar surface integral is invariant under smooth reparametrizations.

As a consequence, we can define the scalar integral of a function over a non-parametrized smooth surface.

Any vector surface integral can be represented as a scalar surface integral:

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t=\iint_{D}(\mathbf{F} \cdot \mathbf{n}) d S,
$$

where $\mathbf{n}=\frac{\mathbf{N}}{\|\mathbf{N}\|}$ is a unit normal vector to the surface. Note that \mathbf{n} depends continuously on a point on the surface, hence determining an orientation of \mathbf{X}.

A smooth reparametrization may be orientation-preserving (when \mathbf{n} is preserved) or orientation-reversing (when \mathbf{n} is changed to $-\mathbf{n}$).

Theorem Any vector surface integral is invariant under smooth orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the vector integral of a vector field over a non-parametrized, oriented smooth surface.

Moebius strip: non-orientable surface

M. C. Escher, 1963

Problem. Let C denote the closed cylinder with bottom given by $z=0$, top given by $z=4$, and lateral surface given by $x^{2}+y^{2}=9$. We orient ∂C with outward normals. Find the integral of a vector field $\mathbf{F}(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ along ∂C.

To evaluate the integral, we cut the boundary ∂C into three parts: the top, the bottom and the lateral surface.
The top of the cylinder is parametrized by $\mathbf{X}_{\text {top }}: D \rightarrow \mathbb{R}^{3}$, $\mathbf{X}_{\text {top }}(x, y)=(x, y, 4)$, where

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 9\right\} .
$$

The bottom is parametrized by $\mathbf{X}_{\text {bot }}: D \rightarrow \mathbb{R}^{3}$,
$\mathbf{X}_{\text {bot }}(x, y)=(x, y, 0)$.
The lateral surface is parametrized by $\mathbf{X}_{\text {lat }}:[0,2 \pi] \times[0,4] \rightarrow \mathbb{R}^{3}, \quad \mathbf{X}_{\text {lat }}(\phi, z)=(3 \cos \phi, 3 \sin \phi, z)$.

We have $\frac{\partial \mathbf{X}_{\text {top }}}{\partial x}=(1,0,0), \frac{\partial \mathbf{X}_{\text {top }}}{\partial y}=(0,1,0)$. Hence $\frac{\partial \mathbf{X}_{\text {top }}}{\partial x} \times \frac{\partial \mathbf{X}_{\text {top }}}{\partial y}=\mathbf{e}_{1} \times \mathbf{e}_{2}=\mathbf{e}_{3}$.
Since $\mathbf{X}_{\text {bot }}=\mathbf{X}_{\text {top }}-(0,0,4)$, we also have $\frac{\partial \mathbf{X}_{\text {bot }}}{\partial x}=\mathbf{e}_{1}$, $\frac{\partial \mathbf{X}_{\text {bot }}}{\partial y}=\mathbf{e}_{2}$, and $\frac{\partial \mathbf{X}_{\text {bot }}}{\partial x} \times \frac{\partial \mathbf{X}_{\text {bot }}}{\partial y}=\mathbf{e}_{3}$.
Further, $\frac{\partial \mathbf{x}_{\text {lat }}}{\partial \phi}=(-3 \sin \phi, 3 \cos \phi, 0)$ and $\frac{\partial \mathbf{X}_{\text {lat }}}{\partial z}=(0,0,1)$. Therefore

$$
\frac{\partial \mathbf{X}_{\mathrm{lat}}}{\partial \phi} \times \frac{\partial \mathbf{X}_{\mathrm{lat}}}{\partial z}=\left|\begin{array}{ccc}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3} \\
-3 \sin \phi & 3 \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right|=(3 \cos \phi, 3 \sin \phi, 0)
$$

We observe that $\mathbf{X}_{\text {top }}$ and $\mathbf{X}_{\text {lat }}$ agree with the orientation of the surface ∂C while $\mathbf{X}_{\text {bot }}$ does not. It follows that

$$
\oiint_{\partial C} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{x}_{\mathrm{top}}} \mathbf{F} \cdot d \mathbf{S}-\iint_{\mathbf{x}_{\mathrm{bot}}} \mathbf{F} \cdot d \mathbf{S}+\iint_{\mathbf{x}_{\mathrm{lat}}} \mathbf{F} \cdot d \mathbf{S} .
$$

Integrating the vector field $\mathbf{F}=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ along each part of the boundary of C, we obtain:

$$
\begin{aligned}
& \iint_{\mathbf{X}_{\mathrm{top}}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(x, y, 4) \cdot(0,0,1) d x d y=\iint_{D} 4 d x d y=36 \pi \\
& \iint_{\mathbf{X}_{\mathrm{bot}}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(x, y, 0) \cdot(0,0,1) d x d y=\iint_{D} 0 d x d y=0 \\
& \iint_{\mathbf{X}_{\mathrm{lat}}} \mathbf{F} \cdot d \mathbf{S}=
\end{aligned}
$$

$$
=\iint_{[0,2 \pi] \times[0,4]}(3 \cos \phi, 3 \sin \phi, z) \cdot(3 \cos \phi, 3 \sin \phi, 0) d \phi d z
$$

$$
=\iint_{[0,2 \pi] \times[0,4]} 9 d \phi d z=72 \pi
$$

Thus $\oiint_{\partial C} \mathbf{F} \cdot d \mathbf{S}=36 \pi-0+72 \pi=108 \pi$.

Gauss's Theorem (a.k.a. Divergence Theorem in \mathbb{R}^{3})

Theorem Let $D \subset \mathbb{R}^{3}$ be a closed, bounded region with piecewise smooth boundary ∂D (not necessarily connected) oriented by outward unit normals to D. Then for any smooth vector field \mathbf{F} on D,

$$
\oiint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V .
$$

Corollary If a smooth vector field $\mathbf{F}: D \rightarrow \mathbb{R}^{3}$
has no divergence, $\nabla \cdot \mathbf{F}=0$, then $\oiint_{C} \mathbf{F} \cdot d \mathbf{S}=0$ for any closed, piecewise smooth surface C that bounds a subregion of D.

Problem. Let C denote the closed cylinder with bottom given by $z=0$, top given by $z=4$, and lateral surface given by $x^{2}+y^{2}=9$. We orient ∂C with outward normals. Find the integral of a vector field $\mathbf{F}(x, y, z)=x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}$ along ∂C.

Now let us use Gauss' Theorem:

$$
\begin{array}{rl}
\oiint_{\partial C} & \mathbf{F} \cdot d \mathbf{S}=\iiint_{C} \nabla \cdot \mathbf{F} d V \\
& =\iiint \int_{C}\left(\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)+\frac{\partial}{\partial z}(z)\right) d x d y d z \\
& =\iiint_{C} 3 d x d y d z=3 \text { volume }(C)=108 \pi
\end{array}
$$

Stokes's Theorem

Suppose S is an oriented surface in \mathbb{R}^{3} bounded by an oriented curve ∂S. We say that ∂S is oriented consistently with S if, as one traverses ∂S, the surface S is on the left when looking down from the tip of \mathbf{n}, the unit normal vector indicating the orientation of S.

Theorem Let $S \subset \mathbb{R}^{3}$ be a bounded, piecewise smooth oriented surface with piecewise smooth boundary ∂S oriented consistently with S. Then for any smooth vector field \mathbf{F} on S,

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s} .
$$

Corollary If the surface S is closed (i.e., has no boundary), then for any smooth vector field \mathbf{F} on S,

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=0 .
$$

Example

Suppose that a bounded, piecewise smooth surface $S \subset \mathbb{R}^{3}$ is contained in the $x y$-coordinate plane, that is, $S=D \times\{0\}$ for a domain $D \subset \mathbb{R}^{2}$. We orient S by the upward unit normal vector $\mathbf{n}=(0,0,1)$ and orient the boundary $\partial S=\partial D \times\{0\}$ consistently with S. Further, suppose that \mathbf{F} is a horizontal vector field, $\mathbf{F}=(M, N, 0)$. By Stokes' Theorem,

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Recall that $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d S$. We obtain

$$
\operatorname{curl}(\mathbf{F}) \cdot \mathbf{n}=\left|\begin{array}{ccc}
0 & 0 & 1 \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
M & N & 0
\end{array}\right|=\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y} .
$$

It follows that this particular case of Stokes' Theorem is equivalent to Green's Theorem.

