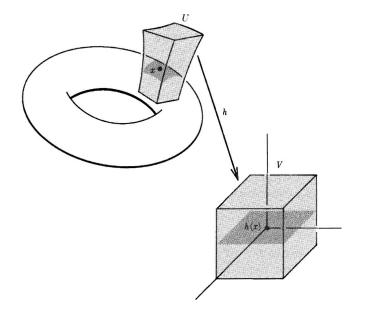
MATH 311 Topics in Applied Mathematics I Lecture 25: Area of a surface. Surface integrals.

Surface



Parametrized surfaces

Definition. Let $D \subset \mathbb{R}^2$ be a connected, bounded region. A continuous one-to-one map $\mathbf{X} : D \to \mathbb{R}^3$ is called a **parametrized surface**. The image $\mathbf{X}(D)$ is called the **underlying surface**.

The parametrized surface is **smooth** if **X** is smooth and, moreover, the vectors $\frac{\partial \mathbf{X}}{\partial s}(s_0, t_0)$ and $\frac{\partial \mathbf{X}}{\partial t}(s_0, t_0)$ are linearly independent for all $(s_0, t_0) \in D$. If this is the case, then the plane in \mathbb{R}^3 through the point $\mathbf{X}(s_0, t_0)$ parallel to vectors $\frac{\partial \mathbf{X}}{\partial s}(s_0, t_0)$ and $\frac{\partial \mathbf{X}}{\partial t}(s_0, t_0)$ is called the **tangent plane** to $\mathbf{X}(D)$ at $\mathbf{X}(s_0, t_0)$.

Example. Suppose $f : \mathbb{R}^3 \to \mathbb{R}$ is a smooth function and consider a **level set** $P = \{(x, y, z) : f(x, y, z) = c\}, c \in \mathbb{R}$. If $\nabla f \neq \mathbf{0}$ at some point $p \in P$, then near that point P is the underlying surface of a parametrized surface. Moreover, the gradient $(\nabla f)(p)$ is orthogonal to the tangent plane at p.

Plane in space

Consider a map $\mathbf{X} : \mathbb{R}^2 \to \mathbb{R}^3$ given by $\mathbf{X} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix}.$

Partial derivatives $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$ are constant, namely, they are columns of the matrix $A = (a_{ij})$. Assume that the columns are linearly independent. Then \mathbf{X} is a parametrized surface. The underlying surface is a plane Π . The tangent plane at every point is Π itself.

For a measurable set $D \subset \mathbb{R}^2$, the image $\mathbf{X}(D)$ is measurable in the plane Π . Moreover, $\operatorname{area}(\mathbf{X}(D)) = \alpha \operatorname{area}(D)$ for some fixed scalar α . To determine α , consider the unit square $Q = [0, 1] \times [0, 1]$. The image $\mathbf{X}(Q)$ is a parallelogram with adjacent sides represented by vectors $\frac{\partial \mathbf{X}}{\partial s}$ and $\frac{\partial \mathbf{X}}{\partial t}$. We obtain that $\alpha = \operatorname{area}(\mathbf{X}(Q)) = \|\frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}\|$.

Area of a surface

Let *P* be a smooth surface parametrized by $\mathbf{X} : D \to \mathbb{R}^3$. Then the area of *P* is

area(P) =
$$\iint_D \left\| \frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t} \right\| ds dt.$$

Suppose *P* is the graph of a smooth function $g: D \to \mathbb{R}$, i.e., *P* is given by z = g(x, y). We have a natural parametrization $\mathbf{X}: D \to \mathbb{R}^3$, $\mathbf{X}(x, y) = (x, y, g(x, y))$. Then $\frac{\partial \mathbf{X}}{\partial x} = (1, 0, g'_x)$ and $\frac{\partial \mathbf{X}}{\partial y} = (0, 1, g'_y)$. Consequently,

$$\frac{\partial \mathbf{X}}{\partial x} \times \frac{\partial \mathbf{X}}{\partial y} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 1 & 0 & g'_x \\ 0 & 1 & g'_y \end{vmatrix} = (-g'_x, -g'_y, 1).$$

It follows that

area(P) =
$$\iint_D \sqrt{1 + |g'_x|^2 + |g'_y|^2} \, dx \, dy.$$

Scalar surface integral

Scalar surface integral is an integral of a scalar function f over a parametrized surface $\mathbf{X} : D \to \mathbb{R}^3$ relative to the area element of the surface. It can be defined as a limit of Riemann sums

$$\mathcal{S}(f, R, \tau_j) = \sum_{j=1}^k f(\mathbf{X}(\tau_j)) \operatorname{area}(\mathbf{X}(D_j)),$$

where $R = \{D_1, D_2, \dots, D_k\}$ is a partition of D into small pieces and $\tau_j \in D_j$ for $1 \le j \le k$.

Theorem Let $\mathbf{X} : D \to \mathbb{R}^3$ be a smooth parametrized surface, where $D \subset \mathbb{R}^2$ is a bounded region. Then for any continuous function $f : \mathbf{X}(D) \to \mathbb{R}$,

$$\iint_{\mathbf{X}} f \, dS = \iint_{D} f \left(\mathbf{X}(s,t) \right) \left\| \frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t} \right\| \, ds \, dt.$$

Vector surface integral

Vector surface integral is an integral of a vector field over a smooth parametrized surface. It is a scalar.

Definition. Let $\mathbf{X} : D \to \mathbb{R}^3$ be a smooth parametrized surface, where $D \subset \mathbb{R}^2$ is a bounded region. Then for any continuous vector field $\mathbf{F} : \mathbf{X}(D) \to \mathbb{R}^3$, the vector integral of \mathbf{F} along \mathbf{X} is

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} (\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) \, ds \, dt,$$

where $\mathbf{N} = \frac{\partial \mathbf{X}}{\partial s} \times \frac{\partial \mathbf{X}}{\partial t}$, a normal vector to the surface.

Equivalently,
$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \begin{vmatrix} F_{1} & F_{2} & F_{3} \\ \frac{\partial X_{1}}{\partial s} & \frac{\partial X_{2}}{\partial s} & \frac{\partial X_{3}}{\partial s} \\ \frac{\partial X_{1}}{\partial t} & \frac{\partial X_{2}}{\partial t} & \frac{\partial X_{3}}{\partial t} \end{vmatrix} ds dt.$$

Applications of surface integrals

• Mass of a shell

If f is the density of a shell P, then $\iint_P f \, dS$ is the mass of P.

• Center of mass of a shell

If f is the density of a shell P, then

$$\frac{\iint_{P} xf(x, y, z) \, dS}{\iint_{P} f \, dS}, \quad \frac{\iint_{P} yf(x, y, z) \, dS}{\iint_{P} f \, dS}, \quad \frac{\iint_{P} zf(x, y, z) \, dS}{\iint_{P} f \, dS}$$

are coordinates of the center of mass of P.

• Flux of fluid

If **F** is the velocity field of a fluid, then $\iint_P \mathbf{F} \cdot d\mathbf{S}$ is the flux of the fluid across the surface *P*.

Surface integrals and reparametrization

Given two smooth parametrized surfaces $\mathbf{X} : D_1 \to \mathbb{R}^3$ and $\mathbf{Y} : D_2 \to \mathbb{R}^3$, we say that \mathbf{Y} is a **smooth reparametrization** of \mathbf{X} if there exists an invertible function $\mathbf{H} : D_2 \to D_1$ such that $\mathbf{Y} = \mathbf{X} \circ \mathbf{H}$ and both \mathbf{H} and \mathbf{H}^{-1} are smooth.

Theorem Any scalar surface integral is invariant under smooth reparametrizations.

As a consequence, we can define the scalar integral of a function over a non-parametrized smooth surface. Any vector surface integral can be represented as a scalar surface integral:

$$\iint_{\mathbf{X}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} (\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) \, ds \, dt = \iint_{D} (\mathbf{F} \cdot \mathbf{n}) \, dS,$$

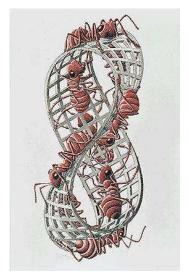
where $\mathbf{n} = \frac{\mathbf{N}}{\|\mathbf{N}\|}$ is a unit normal vector to the surface. Note that \mathbf{n} depends continuously on a point on the surface, hence determining an **orientation** of \mathbf{X} .

A smooth reparametrization may be orientation-preserving (when ${\bf n}$ is preserved) or orientation-reversing (when ${\bf n}$ is changed to $-{\bf n}).$

Theorem Any vector surface integral is invariant under smooth orientation-preserving reparametrizations and changes its sign under orientation-reversing reparametrizations.

As a consequence, we can define the vector integral of a vector field over a non-parametrized, oriented smooth surface.

Moebius strip: non-orientable surface



M. C. Escher, 1963

Problem. Let *C* denote the closed cylinder with bottom given by z = 0, top given by z = 4, and lateral surface given by $x^2 + y^2 = 9$. We orient ∂C with outward normals. Find the integral of a vector field $\mathbf{F}(x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ along ∂C .

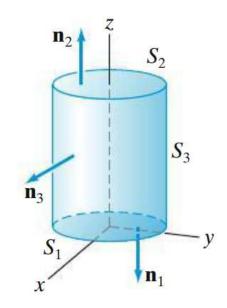
To evaluate the integral, we cut the boundary ∂C into three parts: the top, the bottom and the lateral surface.

The top of the cylinder is parametrized by $\mathbf{X}_{top}: D \to \mathbb{R}^3$, $\mathbf{X}_{top}(x, y) = (x, y, 4)$, where

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 9\}.$$

The bottom is parametrized by $\mathbf{X}_{bot} : D \to \mathbb{R}^3$, $\mathbf{X}_{bot}(x, y) = (x, y, 0)$.

The lateral surface is parametrized by $\mathbf{X}_{\text{lat}} : [0, 2\pi] \times [0, 4] \rightarrow \mathbb{R}^3$, $\mathbf{X}_{\text{lat}}(\phi, z) = (3 \cos \phi, 3 \sin \phi, z)$.



We have
$$\frac{\partial \mathbf{x}_{top}}{\partial x} = (1, 0, 0)$$
, $\frac{\partial \mathbf{x}_{top}}{\partial y} = (0, 1, 0)$. Hence
 $\frac{\partial \mathbf{x}_{top}}{\partial x} \times \frac{\partial \mathbf{x}_{top}}{\partial y} = \mathbf{e}_1 \times \mathbf{e}_2 = \mathbf{e}_3$.
Since $\mathbf{X}_{bot} = \mathbf{X}_{top} - (0, 0, 4)$, we also have $\frac{\partial \mathbf{x}_{bot}}{\partial x} = \mathbf{e}_1$,
 $\frac{\partial \mathbf{x}_{bot}}{\partial y} = \mathbf{e}_2$, and $\frac{\partial \mathbf{x}_{bot}}{\partial x} \times \frac{\partial \mathbf{x}_{bot}}{\partial y} = \mathbf{e}_3$.
Further, $\frac{\partial \mathbf{x}_{lat}}{\partial \phi} = (-3 \sin \phi, 3 \cos \phi, 0)$ and $\frac{\partial \mathbf{x}_{lat}}{\partial z} = (0, 0, 1)$.
Therefore

$$\frac{\partial \mathbf{X}_{\text{lat}}}{\partial \phi} \times \frac{\partial \mathbf{X}_{\text{lat}}}{\partial z} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ -3\sin\phi & 3\cos\phi & 0 \\ 0 & 0 & 1 \end{vmatrix} = (3\cos\phi, 3\sin\phi, 0).$$

We observe that $X_{\rm top}$ and $X_{\rm lat}$ agree with the orientation of the surface ∂C while $X_{\rm bot}$ does not. It follows that

$$\iint_{\partial C} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathbf{X}_{top}} \mathbf{F} \cdot d\mathbf{S} - \iint_{\mathbf{X}_{bot}} \mathbf{F} \cdot d\mathbf{S} + \iint_{\mathbf{X}_{lat}} \mathbf{F} \cdot d\mathbf{S}.$$

Integrating the vector field $\mathbf{F} = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ along each part of the boundary of *C*, we obtain:

$$\iint_{\mathbf{X}_{\text{top}}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (x, y, 4) \cdot (0, 0, 1) \, dx \, dy = \iint_{D} 4 \, dx \, dy = 36\pi,$$
$$\iint_{\mathbf{X}_{\text{bot}}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} (x, y, 0) \cdot (0, 0, 1) \, dx \, dy = \iint_{D} 0 \, dx \, dy = 0,$$
$$\iint_{\mathbf{X}_{\text{lat}}} \mathbf{F} \cdot d\mathbf{S} =$$
$$= \iint_{[0,2\pi] \times [0,4]} (3\cos\phi, 3\sin\phi, z) \cdot (3\cos\phi, 3\sin\phi, 0) \, d\phi \, dz$$
$$= \iint_{[0,2\pi] \times [0,4]} 9 \, d\phi \, dz = 72\pi.$$
Thus
$$\iint_{\partial C} \mathbf{F} \cdot d\mathbf{S} = 36\pi - 0 + 72\pi = 108\pi.$$

Gauss's Theorem (a.k.a. Divergence Theorem in \mathbb{R}^3)

Theorem Let $D \subset \mathbb{R}^3$ be a closed, bounded region with piecewise smooth boundary ∂D (not necessarily connected) oriented by **outward** unit normals to D. Then for any smooth vector field **F** on D.

 $\oint_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \iiint_{D} \nabla \cdot \mathbf{F} \, dV.$

Corollary If a smooth vector field $\mathbf{F}: D \to \mathbb{R}^3$ has no divergence, $\nabla \cdot \mathbf{F} = 0$, then $\oint \mathbf{F} \cdot d\mathbf{S} = 0$ for any closed, piecewise smooth surface C that bounds a subregion of D.

Problem. Let *C* denote the closed cylinder with bottom given by z = 0, top given by z = 4, and lateral surface given by $x^2 + y^2 = 9$. We orient ∂C with outward normals. Find the integral of a vector field $\mathbf{F}(x, y, z) = x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3$ along ∂C .

Now let us use Gauss' Theorem:

Stokes's Theorem

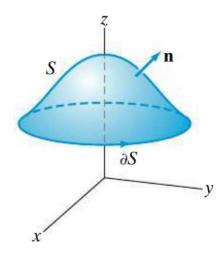
Suppose S is an oriented surface in \mathbb{R}^3 bounded by an oriented curve ∂S . We say that ∂S is **oriented consistently with** S if, as one traverses ∂S , the surface S is on the left when looking down from the tip of **n**, the unit normal vector indicating the orientation of S.

Theorem Let $S \subset \mathbb{R}^3$ be a bounded, piecewise smooth oriented surface with piecewise smooth boundary ∂S oriented consistently with S. Then for any smooth vector field **F** on S,

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s}.$$

Corollary If the surface S is closed (i.e., has no boundary), then for any smooth vector field **F** on S,

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = 0.$$



Example

Suppose that a bounded, piecewise smooth surface $S \subset \mathbb{R}^3$ is contained in the *xy*-coordinate plane, that is, $S = D \times \{0\}$ for a domain $D \subset \mathbb{R}^2$. We orient S by the upward unit normal vector $\mathbf{n} = (0, 0, 1)$ and orient the boundary $\partial S = \partial D \times \{0\}$ consistently with S. Further, suppose that **F** is a horizontal vector field, $\mathbf{F} = (M, N, 0)$. By Stokes' Theorem,

$$\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s}$$

Recall that $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} \ dS$. We obtain

$$\operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} = \begin{vmatrix} 0 & 0 & 1 \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ M & N & 0 \end{vmatrix} = \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}.$$

It follows that this particular case of Stokes' Theorem is equivalent to Green's Theorem.