MATH 311
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Lecture 25:

Area of a surface.
Surface integrals.



Surface




Parametrized surfaces

Definition. Let D C R? be a connected, bounded region.
A continuous one-to-one map X : D — R3 is called a
parametrized surface. The image X(D) is called the
underlying surface.

The parametrized surface is smooth if X is smooth and,
moreover, the vectors 2X(sy, o) and ZX(so, to) are linearly
independent for all (sp, tg) € D. If this is the case, then the
plane in R3 through the point X(sp, ty) parallel to vectors
9X (s0, 1) and ZX(sp, to) is called the tangent plane to
X(D) at X(So, 1.'0).

Example. Suppose f : R — R is a smooth function and
consider a level set P = {(x,y,z): f(x,y,z) =c}, c€R.
If Vf # 0 at some point p € P, then near that point P is
the underlying surface of a parametrized surface. Moreover,
the gradient (Vf)(p) is orthogonal to the tangent plane at p.



Plane in space
Consider a map X : R?2 — R3 given by

s b1 d11 412 s
X =\|b |+ | a1 ax .
t t
bs d31 a3

Partial derivatives g—’: and %—’: are constant, namely, they are

columns of the matrix A = (a;). Assume that the columns
are linearly independent. Then X is a parametrized surface.
The underlying surface is a plane . The tangent plane at
every point is I1 itself.

For a measurable set D C R?, the image X(D) is measurable

in the plane M. Moreover, area(X(D)) = aarea(D) for

some fixed scalar ae. To determine «, consider the unit square
=[0,1] x [0,1]. The image X(Q) is a parallelogram with

adjacent sides represented by vectors ?9_)5( and %—’:. We obtain

that a = area(X(Q)) = ’ 55 X —”



Area of a surface
Let P be a smooth surface parametrized by X : D — R3.

Then the area of P is

8X 8X ds dt.

area

Suppose P is the graph of a smooth function g: D — R, i.e,
P is given by z = g(x,y). We have a natural parametrization

X:D =R X(x,y)=(x,y,g(x,y)). Then 8—’; (1,0,g))
and ax =(0,1,g)). Consequently,

OX  OX _ €1 € €3
1 0 g>/< :(_g;o_g)lml)'

(9x 8y 0 1 g

It follows that

area(P) = // \/1 + |gL? + |gy|* dx dy.
D




Scalar surface integral

Scalar surface integral is an integral of a scalar function f over
a parametrized surface X : D — R? relative to the area
element of the surface. It can be defined as a limit of
Riemann sums

S(f> R’Tj) = Zk

j=1

f(X(77)) area(X(D;)),

where R = {Dy,D,,..., Dy} is a partition of D into small
pieces and 7; € D; for 1 < j < k.

Theorem Let X : D — R3 be a smooth parametrized
surface, where D C R? is a bounded region. Then for any
continuous function f : X(D

[ ras= | rx Ha" aXHdsdt



Vector surface integral

Vector surface integral is an integral of a vector field over a
smooth parametrized surface. It is a scalar.

Definition. Let X : D — R3 be a smooth parametrized
surface, where D C R? is a bounded region. Then for any
continuous vector field F: X(D) — R3, the vector integral of
F along X is

// .dS = // N(s, t) ds dt,

where N = a_ X %, a normal vector to the surface.

Fr F

Equivalently, //F-dsz// % % % ds dt.
X Dl oxi 90X 0Xs
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Applications of surface integrals

e Mass of a shell
If f is the density of a shell P, then [, dS is the mass of P.

e Center of mass of a shell
If f is the density of a shell P, then
[[oXxf(x,y,2)dS  [[oyf(x,y,2)dS [[,zf(x,y,z)dS
[[ofds ' [[-fdS [l fdS

are coordinates of the center of mass of P.

o Flux of fluid

If F is the velocity field of a fluid, then [[, F - dS is the flux
of the fluid across the surface P.



Surface integrals and reparametrization

Given two smooth parametrized surfaces

X:D; —R3and Y:D, = R3 wesaythat Yisa
smooth reparametrization of X if there exists an
invertible function H : D, — D; such that

Y = XoH and both H and H™! are smooth.

Theorem Any scalar surface integral is invariant
under smooth reparametrizations.

As a consequence, we can define the scalar integral
of a function over a non-parametrized smooth
surface.



Any vector surface integral can be represented as a scalar
surface integral:

//XF'dSZ//DF(X(s,t))-N(s,t)dsdt://D(F.n)dS,

where n = ﬁ is a unit normal vector to the surface. Note
that n depends continuously on a point on the surface, hence
determining an orientation of X.

A smooth reparametrization may be orientation-preserving
(when n is preserved) or orientation-reversing (when n is
changed to —n).

Theorem Any vector surface integral is invariant under
smooth orientation-preserving reparametrizations and changes
its sign under orientation-reversing reparametrizations.

As a consequence, we can define the vector integral of a vector
field over a non-parametrized, oriented smooth surface.



Moebius strip: non-orientable surface

M. C. Escher, 1963



Problem. Let C denote the closed cylinder with
bottom given by z =0, top given by z =4, and
lateral surface given by x? + y2=19. We orient 9C
with outward normals. Find the integral of a vector
field F(x,y,z) = xe; + ye, + zes along 0C.

To evaluate the integral, we cut the boundary 9C into three
parts: the top, the bottom and the lateral surface.

The top of the cylinder is parametrized by Xio, : D — R3,
Xtop(XJ.y) = (X7y7 4)' where
D={(x,y) e R?: x>+ y? < 9}.
The bottom is parametrized by Xy : D — R3,
Xpot(X, y) = (x,y,0).

The lateral surface is parametrized by
Xlat : [07 27T] X [074] — R3, Xlat(¢7 Z) = (3 COS¢, 3sin ¢7 Z)'






We have 8)(% = (1,0,0), 22 — (0,1,0). Hence

1o) dy
8Xtop axtop B P
O X oy €e; X e = e3.

Since Xpot = Xop — (0,0,4), we also have Zbot = ey,

8Xbot — aXbot 8Xbot —
et = @y, and et X et = es.

Further, 2t — (—3sin ¢, 3cos¢,0) and 2 = (0,0, 1).
Therefore

e e e3
OXyar X OXyar =|—3sing 3cos¢ 0 |=(3cosp,3sing,0).

We observe that X;., and X, agree with the orientation of
the surface 0C while X,.; does not. It follows that

# F-dS:// F-dS—// F-dS+// F.dS.
aC Xtop Xbot Xiat



Integrating the vector field F = xe; + ye, + ze3 along each
part of the boundary of C, we obtain:

// F-dS = //(X,y,4)~(0,0,1)dxdy://4dxdy:367r,

Xtop D D

// F-dS = //(x,y,O)-(0,0,l)dxdy://dedyzo,
Xbot D D

|| Fras-
Xlat

// (3cos ¢, 3sin¢, z) - (3cosp,3sin,0) do dz
[0,27] x[0,4]

- // 9d¢ dz = 727
[0,27] x[0,4]

Thus # F-dS =36mr—0-+ 727 = 108m.
aC



Gauss's Theorem (a.k.a. Divergence Theorem in R3)

Theorem Let D C R3 be a closed, bounded
region with piecewise smooth boundary 0D (not
necessarily connected) oriented by outward unit
normals to D. Then for any smooth vector field F

on D,
# F-dS:// V-FdV.
oD D

Corollary If a smooth vector field F: D — R3

has no divergence, V-F = 0, then # F-dS=0
C
for any closed, piecewise smooth surface C that

bounds a subregion of D.



Problem. Let C denote the closed cylinder with
bottom given by z =0, top given by z =4, and
lateral surface given by x? + y2=19. We orient 9C
with outward normals. Find the integral of a vector
field F(x,y,z) = xe; + ye, + zes along 0C.

Now let us use Gauss' Theorem:

ﬁé;-dszf/ V-FdV
///( X)+_(Y)+—(Z)) dx dy dz
:[//C3dXdydz:3volume(c):1087T_



Stokes’s Theorem

Suppose S is an oriented surface in R3 bounded by an oriented
curve 9S. We say that 0S is oriented consistently with S
if, as one traverses S, the surface S is on the left when
looking down from the tip of n, the unit normal vector
indicating the orientation of S.

Theorem Let S C R® be a bounded, piecewise smooth
oriented surface with piecewise smooth boundary 9S oriented
consistently with S. Then for any smooth vector field F on S,

// curl(F)-dS = F-ds.
s as

Corollary |If the surface S is closed (i.e., has no boundary),
then for any smooth vector field F on S,

//Scurl(F)-dS ~0.






Example

Suppose that a bounded, piecewise smooth surface S C R3 is
contained in the xy-coordinate plane, that is, S = Dx{0} for
a domain D C R?. We orient S by the upward unit normal
vector n = (0,0,1) and orient the boundary 9S = 0D x {0}
consistently with S. Further, suppose that F is a horizontal
vector field, F = (M, N,0). By Stokes' Theorem,

// curl(F)-dS = F-ds.
as

Recall that ffs curl(F)-dS = ffs curl(F)-n dS. We obtain

0 0 1
curl(F) -n= | 2 a% 2
M N 0

_on_om
Ox Oy

It follows that this particular case of Stokes' Theorem is
equivalent to Green's Theorem.



