
MATH 311

Topics in Applied Mathematics I

Lecture 26:
Review for the final exam.



Topics for the final exam: Part I

Elementary linear algebra (L/C 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for the final exam: Part II

Abstract linear algebra (L/C 3.1–3.6, 4.1–4.3)

• Vector spaces (vectors, matrices, polynomials, functional
spaces).
• Subspaces. Nullspace, column space, and row space of a
matrix.
• Span, spanning set. Linear independence.
• Bases and dimension.
• Rank and nullity of a matrix.
• Coordinates relative to a basis.
• Change of basis, transition matrix.

• Linear transformations.
• Matrix transformations.
• Matrix of a linear mapping.
• Change of basis for a linear operator.
• Similarity of matrices.



Topics for the final exam: Part III

Advanced linear algebra (L/C 5.1–5.6, 6.1, 6.3)

• Eigenvalues, eigenvectors, eigenspaces
• Characteristic polynomial
• Bases of eigenvectors, diagonalization

• Euclidean structure in Rn (length, angle, dot product)
• Inner products and norms
• Orthogonal complement, orthogonal projection
• Least squares problems
• The Gram-Schmidt orthogonalization process



Topics for the final exam: Part IV

Vector analysis (L/C 8.1–8.4, 9.1–9.5, 10.1–10.3,
11.1–11.3)

• Gradient, divergence, and curl

• Fubini’s Theorem
• Change of coordinates in a multiple integral
• Geometric meaning of the determinant

• Length of a curve
• Line integrals
• Green’s Theorem
• Conservative vector fields

• Area of a surface
• Surface integrals
• Gauss’ Theorem
• Stokes’ Theorem



Problem. Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(i) Verify that the field F is conservative.

Since F is a smooth vector field on the entire space, it is
conservative if and only if its Jacobian matrix is symmetric
everywhere in R3. For vector fields on R3, this is equivalent
to curl(F) = 0. We have to verify three identities.

∂F1

∂y
=

∂F2

∂x
:

∂

∂y
(yz+2 cos 2x) =

∂

∂x
(xz−ez ) ⇐⇒ z = z ,

∂F1

∂z
=

∂F3

∂x
:

∂

∂z
(yz+2 cos 2x) =

∂

∂x
(xy−yez) ⇐⇒ y = y ,

∂F2

∂z
=

∂F3

∂y
:

∂

∂z
(xz − ez) =

∂

∂y
(xy − yez)

⇐⇒ x − ez = x − ez .



Problem. Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(ii) Find a function f such that F = ∇f .

We are looking for a function f : R3 → R such that
∂f

∂x
= yz + 2 cos 2x ,

∂f

∂y
= xz − ez ,

∂f

∂z
= xy − yez .

Integrating the first equality by x , we get

f (x , y , z) =

ˆ

(yz + 2 cos 2x) dx = xyz + sin 2x + g(y , z).

Substituting this into the second equality, we obtain
xz + g ′

y = xz − ez so that g ′
y = −ez . Integrating by y , we get

g(y , z) =

ˆ

−ez dy = −yez + h(z).

Then f (x , y , z) = xyz + sin 2x − yez + h(z). Substituting this
into the third equality, we obtain xy − yez + h′(z) = xy − yez .
Hence h′(z) = 0 so that h(z) = c, a constant. Finally,
f (x , y , z) = xyz + sin 2x − yez + c.



Problem. Consider a vector field
F(x , y , z) = (yz + 2 cos 2x , xz − ez , xy − yez).

(ii) Find a function f such that F = ∇f .

Alternative solution: If F = ∇f , then
ˆ

x

F · ds = f (A1)− f (A0)

for any points A0,A1 ∈ R3 and any path x joining A0 to A1.
We can use this relation to recover the function f .

For any given point A = (x , y , z) we consider a linear path xA
from the origin to A, xA : [0, 1] → R3, xA(t) = (tx , ty , tz).
Then

f (A)− f (0) =

ˆ

xA

F · ds =
ˆ

1

0

F(xA(t)) · x′A(t) dt.



f (A)− f (0) =

ˆ

xA

F · ds =
ˆ

1

0

F(xA(t)) · x′A(t) dt

=

ˆ

1

0

(t2yz + 2 cos 2tx , t2xz − etz , t2xy − tyetz ) · (x , y , z) dt

=

ˆ

1

0

(

(t2yz +2 cos 2tx)x +(t2xz− etz )y +(t2xy − tyetz )z
)

dt

=

ˆ

1

0

(3t2xyz + 2x cos 2tx − yetz − tyzetz) dt

= t3xyz
∣

∣

∣

1

t=0

+ sin 2tx
∣

∣

∣

1

t=0

− ytetz
∣

∣

∣

1

t=0

= xyz + sin 2x − yez .

Thus f (x , y , z) = xyz + sin 2x − yez + c, where c = f (0) is
a constant.



Problem. Let C be a solid cylinder bounded by planes
z = 0, z = 2 and a cylindrical surface x2 + y 2 = 1. Orient
the boundary ∂C with outward normals and evaluate a surface
integral ‹

∂C

(x2e1 + y 2e2 + z2e3) · dS.

By Gauss’ Theorem,
‹

∂C

(x2e1+y 2e2+z2e3)·dS =

˚

C

∇·(x2e1+y 2e2+z2e3) dV

=

˚

C

(

∂

∂x
(x2) +

∂

∂y
(y 2) +

∂

∂z
(z2)

)

dx dy dz

=

˚

C

2(x + y + z) dx dy dz .



To evaluate the integral, we switch to cylindrical coordinates
(r , φ, z) using the substitution x = r cos φ, y = r sinφ, z = z .

Jacobian matrix J =
∂(x , y , z)

∂(r , φ, z)
=





cos φ −r sinφ 0
sinφ r cosφ 0
0 0 1



.

˚

C

2(x + y + z) dx dy dz

=

ˆ

2

0

ˆ

2π

0

ˆ

1

0

2(r cosφ+ r sinφ+ z)|det J| dr dφ dz

=

ˆ

2

0

ˆ

2π

0

ˆ

1

0

2(r cosφ+ r sinφ+ z) r dr dφ dz

=

ˆ

2

0

ˆ

2π

0

ˆ

1

0

(

2r 2(cosφ+ sinφ) + 2rz
)

dr dφ dz

=

ˆ

2

0

ˆ

2π

0

ˆ

1

0

2rz dr dφ dz = 2

ˆ

2

0

z dz ·
ˆ

2π

0

dφ ·
ˆ

1

0

r dr = 4π.



Problem. Let D be a region in R3 bounded by a paraboloid
z = x2 + y 2 and a plane z = 9. Let S denote the part of the
paraboloid that bounds D, oriented by outward normals.
Evaluate a surface integral

¨

S

curl(F) · dS,

where F(x , y , z) = (ex
2+z2 , xy + xz + yz , exyz).

We have curlF =
(∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)

= (xzexyz − x − y , 2zex
2+z2 − yzexyz , y + z).

Direct evaluation of the surface integral seems problematic.
By Stokes’ Theorem, the surface integral equals the integral of
the field F along the circle ∂S . However evaluation of this
line integral seems problematic as well.



By the corollary of Stokes’ Theorem,
¨

∂D

curl(F)·dS = 0.

It follows thaẗ

S

curl(F)·dS = −
¨

∂D\S

curl(F)·dS.

We observe that ∂D \ S is a horizontal disc Q×{9}, where
Q = {(x , y ) ∈ R2 : x2 + y 2 ≤ 9}. It is oriented by the upward
normal vector n = (0, 0, 1). Now
¨

∂D\S

curl(F)·dS =

¨

∂D\S

curl(F)·n dS =

¨

Q

(y + 9) dx dy

=

¨

Q

y dx dy +

¨

Q

9 dx dy =

¨

Q

9 dx dy = 9 area(Q) = 81π.

Thus

¨

S

curl(F)·dS = −81π.



Problem. Consider a linear operator L : R3 → R3

defined by L(v) = v0 × v, where
v0 = (3/5, 0,−4/5).

(a) Find the matrix A of the operator L.

(b) Find the range and kernel of L.
(c) Find the eigenvalues of L.

(d) Find the matrix of the operator L2022 (L applied
2022 times).



L(v) = v0 × v, v0 = (3/5, 0,−4/5).

Let v = (x , y , z) = xe1 + ye2 + ze3. Then

L(v) = v0 × v =

∣

∣

∣

∣

∣

∣

e1 e2 e3
3/5 0 −4/5

x y z

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

0 −4/5

y z

∣

∣

∣

∣

e1 −
∣

∣

∣

∣

3/5 −4/5

x z

∣

∣

∣

∣

e2 +

∣

∣

∣

∣

3/5 0

x y

∣

∣

∣

∣

e3

= 4

5
ye1 −

(

4

5
x + 3

5
z
)

e2 +
3

5
ye3 =

(

4

5
y ,−4

5
x − 3

5
z , 3

5
y
)

.

In particular, L(e1) =
(

0,−4

5
, 0
)

, L(e2) =
(

4

5
, 0, 3

5

)

,

L(e3) =
(

0,−3

5
, 0
)

.



Therefore A =





0 4/5 0

−4/5 0 −3/5
0 3/5 0



.

The range of the operator L is spanned by columns

of the matrix A. It follows that Range(L) is the
plane spanned by v1 = (0, 1, 0) and v2 = (4, 0, 3).

The kernel of L is the nullspace of the matrix A,

i.e., the solution set for the equation Ax = 0.




0 4/5 0
−4/5 0 −3/5

0 3/5 0



 →





1 0 3/4
0 1 0

0 0 0





=⇒ x + 3

4
z = y = 0 =⇒ x = t(−3/4, 0, 1).



Alternatively, the kernel of L is the set of vectors

v ∈ R3 such that L(v) = v0 × v = 0.

It follows that this is the line spanned by

v0 = (3/5, 0,−4/5).

Characteristic polynomial of the matrix A:

det(A− λI ) =

∣

∣

∣

∣

∣

∣

−λ 4/5 0
−4/5 −λ −3/5
0 3/5 −λ

∣

∣

∣

∣

∣

∣

= −λ3−(3/5)2λ−(4/5)2λ = −λ3−λ = −λ(λ2+1).

The eigenvalues are 0, i , and −i .



The matrix of the operator L2022 is A2022.

Since the matrix A has eigenvalues 0, i , and −i , it is

diagonalizable in C
3. Namely, A = UDU−1, where

U is an invertible matrix with complex entries and

D =





0 0 0
0 i 0

0 0 −i



.

Then A2022 = UD2022U−1. We have that D2022 =
= diag

(

0, i 2022, (−i)2022
)

= diag(0,−1,−1) = D2.
Hence

A2022 = UD2U−1 = A2 =





−0.64 0 −0.48

0 −1 0
−0.48 0 −0.36



.



Problem. Find the distance from the point
y = (0, 0, 0, 1) to the subspace V ⊂ R4 spanned

by vectors x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
and x3 = (−3, 7, 1, 3).

First we apply the Gram-Schmidt process to vectors x1, x2, x3
and obtain an orthogonal basis v1, v2, v3 for the subspace V .
Next we compute the orthogonal projection p of the vector y
onto V :

p =
〈y, v1〉
〈v1, v1〉

v1 +
〈y, v2〉
〈v2, v2〉

v2 +
〈y, v3〉
〈v3, v3〉

v3.

Then the distance from y to V equals ‖y − p‖.

Alternatively, we can apply the Gram-Schmidt process to
vectors x1, x2, x3, y. We should obtain an orthogonal system
v1, v2, v3, v4. Then the desired distance will be ‖v4‖.



x1 = (1,−1, 1,−1), x2 = (1, 1, 3,−1),
x3 = (−3, 7, 1, 3), y = (0, 0, 0, 1).

v1 = x1 = (1,−1, 1,−1),

v2 = x2−
〈x2, v1〉
〈v1, v1〉

v1 = (1, 1, 3,−1)− 4

4
(1,−1, 1,−1)

= (0, 2, 2, 0),

v3 = x3 −
〈x3, v1〉
〈v1, v1〉

v1 −
〈x3, v2〉
〈v2, v2〉

v2

= (−3, 7, 1, 3)− −12

4
(1,−1, 1,−1)− 16

8
(0, 2, 2, 0)

= (0, 0, 0, 0).



The Gram-Schmidt process can be used to check
linear independence of vectors! It failed because

the vector x3 is a linear combination of x1 and x2.
V is a plane, not a 3-dimensional subspace. To fix

things, it is enough to drop x3, i.e., we should
orthogonalize vectors x1, x2, y.

ṽ3 = y − 〈y, v1〉
〈v1, v1〉

v1 −
〈y, v2〉
〈v2, v2〉

v2

= (0, 0, 0, 1)− −1

4
(1,−1, 1,−1)− 0

8
(0, 2, 2, 0)

= (1/4,−1/4, 1/4, 3/4).

‖ṽ3‖ =
∣

∣

∣

(1

4
,−1

4
,
1

4
,
3

4

)∣

∣

∣
=

1

4
|(1,−1, 1, 3)| =

√
12

4
=

√
3

2
.


