Homework assignment \#10

Problem 1. Find the distance from the point $(1,2)$ to the line $4 x-3 y=0$.
Problem 2. Let V be the subspace of \mathbb{R}^{3} spanned by $(1,-1,1)$. Find a basis for the orthogonal complement V^{\perp}.

Problem 3. Find the orthogonal complement of the subspace of \mathbb{R}^{3} spanned by vectors $(1,2,1)$ and $(1,-1,2)$.

Problem 4. Let V be the subspace of \mathbb{R}^{4} spanned by vectors $(1,0,-2,1)$ and $(0,1,3,-2)$. Find a basis for the orthogonal complement V^{\perp}.

Problem 5. If A is an $m \times n$ matrix of rank r, what are the dimensions of the nullspaces $N(A)$ and $N\left(A^{T}\right)$? Explain.

Problem 6. For each of the following systems, find the least squares solution:
(i) $\left\{\begin{array}{l}x_{1}+2 x_{2}=3 \\ 2 x_{1}+4 x_{2}=2 \\ -x_{1}-2 x_{2}=1\end{array}\right.$
(ii) $\left\{\begin{array}{l}-x_{1}+x_{2}=10 \\ 2 x_{1}+x_{2}=5 \\ x_{1}-2 x_{2}=20\end{array}\right.$
(iii) $\left\{\begin{array}{l}x_{1}+x_{2}+x_{3}=4 \\ -x_{1}+x_{2}+x_{3}=0 \\ -x_{2}+x_{3}=1 \\ x_{1}+x_{3}=2\end{array}\right.$

Problem 7. Consider the following data:

$$
\begin{array}{c||c|c|c|c}
x & -1 & 0 & 1 & 2 \\
\hline f(x) & 0 & 1 & 3 & 9
\end{array}
$$

(i) Find a linear polynomial which is the best least squares fit to the data. Plot the graph along with the data on a coordinate system.
(ii) Find a quadratic polynomial which is the best least squares fit to the data. Plot the graph along with the data on a coordinate system.

