Homework assignment #4

Problem 1. Let **0** be the zero vector of a vector space V. Prove that $\beta \mathbf{0} = \mathbf{0}$ for each scalar β .

Problem 2. Consider the set $V = \mathbb{R}^2$ with addition \oplus and scalar multiplication \odot defined by

$$(x_1, x_2) \oplus (y_1, y_2) = (x_1 + x_2, y_1 + y_2),$$

 $\alpha \odot (x_1, x_2) = (\alpha x_1, x_2).$

Is V a vector space with these operations? Justify your answer.

Problem 3. Determine whether the following sets form subspaces of the vector space \mathbb{R}^2 . (i) The set S_1 of all vectors $(x_1, x_2) \in \mathbb{R}^2$ such that $x_1 x_2 = 0$. (ii) The set S_2 of all vectors $(x_1, x_2) \in \mathbb{R}^2$ such that $x_1 = 3x_2$.

Problem 4. Determine whether the following vectors form a spanning set for the vector space \mathbb{R}^2 :

(i) $\begin{pmatrix} 2\\3 \end{pmatrix}$ and $\begin{pmatrix} 4\\6 \end{pmatrix}$; (ii) $\begin{pmatrix} -2\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\3 \end{pmatrix}$ and $\begin{pmatrix} 2\\4 \end{pmatrix}$.

Problem 5. Let $\mathbf{v} = (-1, 2, 3)$ and $\mathbf{w} = (3, 4, 2)$. Determine whether the following vectors belong to $\text{Span}(\mathbf{v}, \mathbf{w})$, the span of \mathbf{v} and \mathbf{w} :

(i) (2, 6, 6), (ii) (-9, -2, 5).

Problem 6. Determine whether $\{x + 2, x + 1, x^2 - 1\}$ is a spanning set for \mathcal{P}_3 , the vector space of polynomials of degree at most 2.

Problem 7. Suppose that U_1 and U_2 are subspaces of the same vector space V. Prove that their intersection $U_1 \cap U_2$ is also a subspace of V.