Homework assignment \#5

Problem 1. Determine whether the following vectors are linearly independent in \mathbb{R}^{3} :
(i) $(2,1,-2),(3,2,-2)$ and $(2,2,0)$;
(ii) $(2,1,-2),(-2,-1,2)$ and $(4,2,-4)$;
(iii) $(1,1,3)$ and $(0,2,1)$.

Problem 2. Determine whether the following matrices are linearly independent in the vector space $\mathcal{M}_{2,2}(\mathbb{R})$ of 2×2 matrices:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right) .
$$

Problem 3. Determine whether the following polynomials are linearly independent in the vector space \mathcal{P} of polynomials:
(i) $2, x^{2}, x$ and $2 x+3 ; \quad$ (ii) $x+2, x+1$ and $x^{2}-1$.

Problem 4. Show that the following functions are linearly independent in the vector space $C[0,1]$:
(i) e^{x}, e^{-x} and $e^{2 x}$; (ii) $1, e^{x}+e^{-x}$ and $e^{x}-e^{-x}$.

Problem 5. The functions $f(x)=2 x$ and $g(x)=|x|$ can be considered elements of the vector space $C[a, b]$ for any interval $[a, b] \subset \mathbb{R}$. Show that $f(x)$ and $g(x)$ are linearly independent in $C[-1,1]$ while being linearly dependent in $C[0,1]$.

Problem 6. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}$ and \mathbf{v}_{3} are linearly independent vectors in a vector space V. Prove that the vectors $\mathbf{w}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{w}_{2}=\mathbf{v}_{2}+\mathbf{v}_{3}$ and $\mathbf{w}_{3}=\mathbf{v}_{3}+\mathbf{v}_{1}$ are also linearly independent in V.

