Homework assignment \#6

Problem 1. Given $\mathbf{v}_{1}=(1,1,1)$ and $\mathbf{v}_{2}=(3,-1,4)$, find a third vector \mathbf{v}_{3} that will extend the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ to a basis for \mathbb{R}^{3}.

Problem 2. The following vectors span the vector space \mathbb{R}^{3} :

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
2 \\
5 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right), \quad \mathbf{v}_{4}=\left(\begin{array}{l}
2 \\
7 \\
4
\end{array}\right), \quad \mathbf{v}_{5}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)
$$

Pare down the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{5}\right\}$ to a basis for \mathbb{R}^{3}.

Problem 3. Find the dimension of the subspace of \mathbb{R}^{3} spanned by the given vectors:
(i) $(1,-2,2),(2,-2,4)$ and $(-3,3,6)$;
(ii) $(1,1,1),(1,2,3)$ and $(2,3,1)$;
(iii) $(1,-1,2),(-2,2,4),(3,-2,5)$ and $(2,-1,3)$.

Problem 4. Find the dimension of the subspace of \mathcal{P} spanned by the given polynomials:
(i) $x, x-1, x^{2}+1$ and $x^{2}-1$;
(ii) $x^{2}, x^{2}-x-1$ and $x+1$.

Problem 5 (2 pts). Find a basis for the row space, a basis for the column space, and a basis for the nullspace of the following matrix:

$$
\left(\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 4 \\
4 & 7 & 8
\end{array}\right)
$$

Problem 6. Prove that a linear system $A \mathbf{x}=\mathbf{b}$ is consistent if and only if the rank of the augmented matrix $(A \mid \mathbf{b})$ equals the rank of the coefficient matrix A.
[Hint: compare the column spaces.]

