Homework assignment #6

Problem 1. Given $\mathbf{v}_1 = (1, 1, 1)$ and $\mathbf{v}_2 = (3, -1, 4)$, find a third vector \mathbf{v}_3 that will extend the set $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a basis for \mathbb{R}^3 .

Problem 2. The following vectors span the vector space \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 2\\5\\4 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\3\\2 \end{pmatrix}, \quad \mathbf{v}_4 = \begin{pmatrix} 2\\7\\4 \end{pmatrix}, \quad \mathbf{v}_5 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}.$$

Pare down the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5\}$ to a basis for \mathbb{R}^3 .

Problem 3. Find the dimension of the subspace of R³ spanned by the given vectors:
(i) (1, -2, 2), (2, -2, 4) and (-3, 3, 6);
(ii) (1, 1, 1), (1, 2, 3) and (2, 3, 1);
(iii) (1, -1, 2), (-2, 2, 4), (3, -2, 5) and (2, -1, 3).

Problem 4. Find the dimension of the subspace of \mathcal{P} spanned by the given polynomials: (i) $x, x - 1, x^2 + 1$ and $x^2 - 1$; (ii) $x^2, x^2 - x - 1$ and x + 1.

Problem 5 (2 pts). Find a basis for the row space, a basis for the column space, and a basis for the nullspace of the following matrix:

$$\begin{pmatrix} 1 & 3 & 2 \\ 2 & 1 & 4 \\ 4 & 7 & 8 \end{pmatrix}.$$

Problem 6. Prove that a linear system $A\mathbf{x} = \mathbf{b}$ is consistent if and only if the rank of the augmented matrix $(A \mid \mathbf{b})$ equals the rank of the coefficient matrix A. [Hint: compare the column spaces.]