Homework assignment \#7

Problem 1. Vectors $\mathbf{v}_{1}=(1,1)$ and $\mathbf{v}_{2}=(-1,1)$ form a basis for the vector space \mathbb{R}^{2}. Vectors $\mathbf{u}_{1}=(5,3)$ and $\mathbf{u}_{2}=(3,2)$ form another basis for \mathbb{R}^{2}.
(i) Find the transition matrix from the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ and the transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}$ to $\mathbf{v}_{1}, \mathbf{v}_{2}$.
(ii) Find the transition matrix from the ordered basis $\mathbf{u}_{1}, \mathbf{u}_{2}$ to the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}$ and the transition matrix from $\mathbf{e}_{1}, \mathbf{e}_{2}$ to $\mathbf{u}_{1}, \mathbf{u}_{2}$.
(iii) Find coordinates of the vector $\mathbf{w}=(10,7)$ relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ and coordinates of \mathbf{w} relative to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$.

Problem 2. Vectors $\mathbf{v}_{1}=(4,6,7), \mathbf{v}_{2}=(0,1,1)$ and $\mathbf{v}_{3}=(0,1,2)$ form a basis for the vector space \mathbb{R}^{3}. Vectors $\mathbf{u}_{1}=(1,1,1), \mathbf{u}_{2}=(1,2,2)$ and $\mathbf{u}_{3}=(2,3,4)$ form another basis for \mathbb{R}^{3}.
(i) Find the transition matrix from the standard basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to the ordered basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
(ii) Find the transition matrix from the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the ordered basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$.
(iii) Find coordinates of the vector $\mathbf{w}=2 \mathbf{v}_{1}+3 \mathbf{v}_{2}-4 \mathbf{v}_{3}$ relative to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, coordinates of \mathbf{w} relative to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}$, and coordinates of \mathbf{w} relative to the standard basis.

Problem 3. Given

$$
\mathbf{v}_{1}=\binom{1}{2}, \quad \mathbf{v}_{2}=\binom{2}{3}, \quad U=\left(\begin{array}{rr}
3 & 5 \\
1 & -2
\end{array}\right),
$$

find vectors \mathbf{w}_{1} and \mathbf{w}_{2} so that U will be the transition matrix from the ordered basis $\mathbf{w}_{1}, \mathbf{w}_{2}$ for \mathbb{R}^{2} to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}$.

Problem 4. Polynomials $p_{1}(x)=1, p_{2}(x)=x$ and $p_{3}(x)=x^{2}$ form a basis for the vector space \mathcal{P}_{3}. Polynomials $q_{1}(x)=1, q_{2}(x)=1+x$ and $q_{3}(x)=1+x+x^{2}$ form another basis for \mathcal{P}_{3}.
(i) Find the transition matrix from the ordered basis q_{1}, q_{2}, q_{3} to the ordered basis p_{1}, p_{2}, p_{3}.
(ii) Find the transition matrix from the ordered basis p_{1}, p_{2}, p_{3} to the ordered basis q_{1}, q_{2}, q_{3}.
(iii) Find coordinates of the polynomial $r(x)=2 x^{2}+3 x-1$ relative to the ordered basis q_{1}, q_{2}, q_{3}.

