Homework assignment #8

Problem 1. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator. Suppose that L(1,2) = (-2,3) and L(1,-1) = (5,2). Find the value of L(7,5).

Problem 2. Consider a map $f : \mathcal{M}_{n,n}(\mathbb{R}) \to \mathcal{M}_{n,n}(\mathbb{R})$ given by f(A) = A + I for all $n \times n$ matrices A (where I is the $n \times n$ identity matrix). Determine whether f is a linear operator.

Problem 3. Determine the kernel and range of the linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by L(x, y, z) = (x, x, x) for all $(x, y, z) \in \mathbb{R}^3$.

Problem 4. Determine the kernel and range of the linear operator $L : \mathcal{P}_3 \to \mathcal{P}_3$ given by L(p(x)) = xp'(x) for all polynomials p(x) of degree less than 3.

Problem 5. Consider a linear transformation $L : \mathbb{R}^3 \to \mathbb{R}^2$ given by

L(x, y, z) = (y - x, z - y)

for all $(x, y, z) \in \mathbb{R}^3$. Find a matrix A such that $L(\mathbf{v}) = A\mathbf{v}$ for every $\mathbf{v} \in \mathbb{R}^3$, where \mathbf{v} and $L(\mathbf{v})$ are regarded as column vectors.

Problem 6. Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L(x, y, z) = (2z, y + 3x, 2x - z)$$

for all $(x, y, z) \in \mathbb{R}^3$. Find a matrix A such that $L(\mathbf{v}) = A\mathbf{v}$ for every $\mathbf{v} \in \mathbb{R}^3$, where \mathbf{v} and $L(\mathbf{v})$ are regarded as column vectors.

Problem 7. Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by

L(x, y, z) = (2x - y - z, 2y - x - z, 2z - x - y)

for all $(x, y, z) \in \mathbb{R}^3$. Find the matrix A of L with respect to the standard basis, and use A to find the value of L(1, 1, 1).

Problem 8. Let V be the subspace of $C^{\infty}[0,1]$ spanned by the functions $f_1(x) = e^x$, $f_2(x) = xe^x$ and $f_3(x) = x^2e^x$. Let D be the differentiation operator restricted to V. Find the matrix of D with respect to the ordered basis f_1, f_2, f_3 .

Problem 9. Consider a linear operator $L : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$L\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}3 & -1 & -2\\2 & 0 & -2\\2 & -1 & -1\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}$$

for all $(x, y, z) \in \mathbb{R}^3$. Let $\mathbf{v}_1 = (1, 1, 1)$, $\mathbf{v}_2 = (1, 2, 0)$ and $\mathbf{v}_3 = (0, -2, 1)$. Find the transition matrix from the ordered basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ to the standard basis, and use it to determine the matrix of L with respect to $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Problem 10. Show that if A and B are similar matrices, then det(A) = det(B).