
MATH 323

Linear Algebra

Lecture 4:

Matrix multiplication.

Diagonal matrices.

Inverse matrix.



Matrices

Definition. An m-by-n matrix is a rectangular

array of numbers that has m rows and n columns:











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn











Notation: A = (aij)1≤i≤m, 1≤j≤n or simply A = (aij)
if the dimensions are known.



Matrix algebra: linear operations

Addition: two matrices of the same dimensions

can be added by adding their corresponding entries.

Scalar multiplication: to multiply a matrix A by
a scalar r , one multiplies each entry of A by r .

Zero matrix O: all entries are zeros.

Negative: −A is defined as (−1)A.

Subtraction: A− B is defined as A+ (−B).

As far as the linear operations are concerned, the

m×n matrices can be regarded as mn-dimensional
vectors.



Properties of linear operations

(A+ B) + C = A+ (B + C )

A+ B = B + A

A+ O = O + A = A

A+ (−A) = (−A) + A = O

r(sA) = (rs)A

r(A+ B) = rA+ rB

(r + s)A = rA+ sA

1A = A

0A = O

(−1)A = −A



Dot product

Definition. The dot product of n-dimensional
vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)

is a scalar

x · y = x1y1 + x2y2 + · · ·+ xnyn =

n
∑

k=1

xkyk .

The dot product is also called the scalar product.



Matrix multiplication

The product of matrices A and B is defined if the

number of columns in A matches the number of
rows in B .

Definition. Let A = (aik) be an m×n matrix and

B = (bkj) be an n×p matrix. The product AB is
defined to be the m×p matrix C = (cij) such that

cij =
∑n

k=1
aikbkj for all indices i , j .

That is, matrices are multiplied row by column:
(

∗ ∗ ∗
* * *

)





∗ ∗ * ∗
∗ ∗ * ∗
∗ ∗ * ∗



 =

(

∗ ∗ ∗ ∗
∗ ∗ * ∗

)



A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...

am1 am2 . . . amn











=











v1
v2
...
vm











B =











b11 b12 . . . b1p
b21 b22 . . . b2p
...

... . . . ...

bn1 bn2 . . . bnp











= (w1,w2, . . . ,wp)

=⇒ AB =











v1·w1 v1·w2 . . . v1·wp

v2·w1 v2·w2 . . . v2·wp
...

... . . . ...
vm·w1 vm·w2 . . . vm·wp













Examples.

(x1, x2, . . . , xn)









y1
y2
...
yn









= (
∑n

k=1
xkyk),









y1
y2
...
yn









(x1, x2, . . . , xn) =









y1x1 y1x2 . . . y1xn
y2x1 y2x2 . . . y2xn
...

... . . . ...
ynx1 ynx2 . . . ynxn









.



Example.

(

1 1 −1
0 2 1

)





0 3 1 1
−2 5 6 0

1 7 4 1



 =

(

−3 1 3 0
−3 17 16 1

)





0 3 1 1

−2 5 6 0
1 7 4 1





(

1 1 −1
0 2 1

)

is not defined



System of linear equations:














a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = bm

Matrix representation of the system:










a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn





















x1
x2
...
xn











=











b1
b2
...
bm



























a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · · · · ·

am1x1 + am2x2 + · · ·+ amnxn = bm

⇐⇒ Ax = b,

where

A =











a11 a12 . . . a1n
a21 a22 . . . a2n
...

... . . . ...
am1 am2 . . . amn











, x =











x1
x2
...
xn











, b =











b1
b2
...
bm











.



Properties of matrix multiplication:

(AB)C = A(BC ) (associative law)

(A+ B)C = AC + BC (distributive law #1)

C (A+ B) = CA+ CB (distributive law #2)

(rA)B = A(rB) = r(AB)

Any of the above identities holds provided that

matrix sums and products are well defined.



If A and B are n×n matrices, then both AB and

BA are well defined n×n matrices.

However, in general, AB 6= BA.

Example. Let A =

(

2 0
0 1

)

, B =

(

1 1
0 1

)

.

Then AB =

(

2 2
0 1

)

, BA =

(

2 1
0 1

)

.

If AB does equal BA, we say that the matrices A
and B commute.



Problem. Let A and B be arbitrary n×n

matrices. Is it true that (A−B)(A+B) = A2−B2?

(A− B)(A+ B) = (A− B)A+ (A− B)B

= (AA− BA) + (AB − BB)

= A2 + AB − BA− B2
.

Hence (A− B)(A+ B) = A2 − B2 if and only if
A commutes with B .



Diagonal matrices

If A = (aij) is a square matrix, then the entries aii
are called diagonal entries. A square matrix is
called diagonal if all non-diagonal entries are zeros.

Example.





7 0 0

0 1 0
0 0 2



, denoted diag(7, 1, 2).

Let A = diag(s1, s2, . . . , sn), B = diag(t1, t2, . . . , tn).

Then A+ B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).



Example.




7 0 0
0 1 0

0 0 2









−1 0 0
0 5 0

0 0 3



 =





−7 0 0
0 5 0

0 0 6





Theorem Let A = diag(s1, s2, . . . , sn),
B = diag(t1, t2, . . . , tn).

Then A+ B = diag(s1 + t1, s2 + t2, . . . , sn + tn),

rA = diag(rs1, rs2, . . . , rsn).

AB = diag(s1t1, s2t2, . . . , sntn).

In particular, diagonal matrices always commute

(i.e., AB = BA).



Example.




7 0 0
0 1 0

0 0 2









a11 a12 a13
a21 a22 a23
a31 a32 a33



 =





7a11 7a12 7a13
a21 a22 a23
2a31 2a32 2a33





Theorem Let D = diag(d1, d2, . . . , dm) and A be

an m×n matrix. Then the matrix DA is obtained
from A by multiplying the ith row by di for

i = 1, 2, . . . ,m:

A =











v1
v2
...
vm











=⇒ DA =











d1v1
d2v2
...

dmvm













Example.




a11 a12 a13
a21 a22 a23
a31 a32 a33









7 0 0

0 1 0
0 0 2



 =





7a11 a12 2a13
7a21 a22 2a23
7a31 a32 2a33





Theorem Let D = diag(d1, d2, . . . , dn) and A be
an m×n matrix. Then the matrix AD is obtained
from A by multiplying the ith column by di for

i = 1, 2, . . . , n:

A = (w1,w2, . . . ,wn)

=⇒ AD = (d1w1, d2w2, . . . , dnwn)



Identity matrix

Definition. The identity matrix (or unit matrix) is

a diagonal matrix with all diagonal entries equal to 1.
The n×n identity matrix is denoted In or simply I .

I1 = (1), I2 =

(

1 0
0 1

)

, I3 =





1 0 0

0 1 0
0 0 1



.

In general, I =







1 0 . . . 0
0 1 . . . 0...

... . . . ...
0 0 . . . 1






.

Theorem. Let A be an arbitrary m×n matrix.
Then ImA = AIn = A.



Inverse matrix

Let Mn(R) denote the set of all n×n matrices with

real entries. We can add, subtract, and multiply

elements of Mn(R). What about division?

Definition. Let A ∈ Mn(R). Suppose there exists

an n×n matrix B such that

AB = BA = In.

Then the matrix A is called invertible and B is

called the inverse of A (denoted A−1).

A non-invertible square matrix is called singular.

AA−1 = A−1A = I



Examples

A =

(

1 1
0 1

)

, B =

(

1 −1
0 1

)

, C =

(

−1 0
0 1

)

.

AB =

(

1 1

0 1

)(

1 −1

0 1

)

=

(

1 0

0 1

)

,

BA =

(

1 −1

0 1

)(

1 1

0 1

)

=

(

1 0

0 1

)

,

C 2 =

(

−1 0

0 1

)(

−1 0

0 1

)

=

(

1 0

0 1

)

.

Thus A−1 = B , B−1 = A, and C−1 = C .


