MATH 323
 Linear Algebra
 Lecture 6:
 Matrix algebra (continued). Determinants.

General results on inverse matrices

Theorem 1 Given an $n \times n$ matrix A, the following conditions are equivalent:
(i) A is invertible;
(ii) $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$;
(iii) the matrix equation $A \mathbf{x}=\mathbf{b}$ has a unique solution for any n-dimensional column vector \mathbf{b};
(iv) the row echelon form of A has no zero rows;
(v) the reduced row echelon form of A is the identity matrix.

Theorem 2 Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Row echelon form of a square matrix:

invertible case

noninvertible case

Why does it work?

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{rrr}
a_{1} & a_{2} & a_{3} \\
2 b_{1} & 2 b_{2} & 2 b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1}+3 a_{1} & b_{2}+3 a_{2} & b_{3}+3 a_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right), \\
\\
\\
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)=\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
c_{1} & c_{2} & c_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right) .
\end{gathered}
$$

Theorem Any elementary row operation can be simulated as left multiplication by a certain matrix (called an elementary matrix).

Elementary matrices

$$
E=\left(\begin{array}{lllllll}
1 & & & & & & \\
& \ddots & & & & O & \\
& & 1 & & & & \\
& & & r & & & \\
& 0 & & & 1 & & \\
& & & & & 1
\end{array}\right) \text { row \#i }
$$

To obtain the matrix $E A$ from A, multiply the i th row by r. To obtain the matrix $A E$ from A, multiply the i th column by r.

Elementary matrices

$$
E=\left(\begin{array}{cccccc}
1 & & & & & \\
\vdots & \ddots & & & & O \\
0 & \cdots & 1 & & & \\
\vdots & & \vdots & \ddots & & \\
0 & \cdots & r & \cdots & 1 &
\end{array} \quad \text { row } \# i\right.
$$

To obtain the matrix $E A$ from A, add r times the i th row to the j th row. To obtain the matrix $A E$ from A, add r times the j th column to the i th column.

Elementary matrices

$$
E=\left(\begin{array}{ccccccc}
1 & & & & & 0 & \\
& \ddots & & & & & \\
& & 0 & \cdots & 1 & & \\
& & \vdots & \ddots & \vdots & & \\
& & 1 & \cdots & 0 & & \\
& 0 & & & & \ddots & \\
& & & & & 1
\end{array}\right) \quad \text { row } \# i
$$

To obtain the matrix $E A$ from A, interchange the i th row with the j th row. To obtain $A E$ from A, interchange the i th column with the j th column.

Elementary matrices

Theorem 1 Any elementary row operation σ on matrices with n rows can be simulated as left multiplication by a certain $n \times n$ matrix E_{σ} (called an elementary matrix).

Theorem 2 Elementary matrices are invertible.
Proof: Suppose E_{σ} is an $n \times n$ elementary matrix corresponding to an operation σ. We know that σ can be undone by another elementary row operation τ. It is easy to check that σ undoes τ as well. Then for any matrix A with n rows we have $E_{\tau} E_{\sigma} A=A$ (since τ undoes σ) and $E_{\sigma} E_{\tau} A=A$ (since σ undoes τ). In particular, $E_{\tau} E_{\sigma} I=E_{\sigma} E_{\tau} I=I$, which implies that $E_{\tau}=E_{\sigma}^{-1}$.

Theorem 3 A square matrix is invertible if and only if it can be expanded into a product of elementary matrices.

Theorem Suppose that a sequence of elementary row operations converts a matrix A into the identity matrix.

Then the same sequence of operations converts the identity matrix into the inverse matrix A^{-1}.

Proof: Let $E_{1}, E_{2}, \ldots, E_{k}$ be elementary matrices that correspond to elementary row operations converting A into I. Then $E_{k} E_{k-1} \ldots E_{2} E_{1} A=I$.

Applying the same sequence of operations to the identity matrix I, we obtain the matrix

$$
B=E_{k} E_{k-1} \ldots E_{2} E_{1} I=E_{k} E_{k-1} \ldots E_{2} E_{1} .
$$

Therefore $B A=I$. Besides, B is invertible since elementary matrices are invertible. Then $B^{-1}(B A)=B^{-1} /$. It follows that $A=B^{-1}$, hence $B=A^{-1}$.

Theorem A square matrix A is invertible if and only if $\mathbf{x}=\mathbf{0}$ is the only solution of the matrix equation $A \mathbf{x}=\mathbf{0}$.

Corollary 1 For any $n \times n$ matrices A and B,

$$
B A=I \Longleftrightarrow A B=I
$$

Proof: It is enough to prove that $B A=I \Longrightarrow A B=I$. Assume $B A=I$. Then $A \mathbf{x}=\mathbf{0} \Longrightarrow B(A \mathbf{x})=B \mathbf{0}$
$\Longrightarrow(B A) \mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}=\mathbf{0}$. By the theorem, A is invertible.
Then $B A=I \Longrightarrow A(B A) A^{-1}=A I A^{-1} \Longrightarrow A B=I$.
Corollary 2 Suppose A and B are $n \times n$ matrices. If the product $A B$ is invertible, then both A and B are invertible.
Proof: Let $C=B(A B)^{-1}$ and $D=(A B)^{-1} A$. Then $A C=A\left(B(A B)^{-1}\right)=(A B)(A B)^{-1}=I$ and $D B=\left((A B)^{-1} A\right) B=(A B)^{-1}(A B)=I . \quad$ By Corollary 1 , $C=A^{-1}$ and $D=B^{-1}$.

Transpose of a matrix

Definition. Given a matrix A, the transpose of A, denoted A^{T}, is the matrix whose rows are columns of A (and whose columns are rows of A). That is, if $A=\left(a_{i j}\right)$ then $A^{T}=\left(b_{i j}\right)$, where $b_{i j}=a_{j i}$.

Examples. $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$,
$\left(\begin{array}{l}7 \\ 8 \\ 9\end{array}\right)^{T}=(7,8,9), \quad\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)^{T}=\left(\begin{array}{ll}4 & 7 \\ 7 & 0\end{array}\right)$.

Properties of transposes:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(r A)^{T}=r A^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\left(A_{1} A_{2} \ldots A_{k}\right)^{T}=A_{k}^{T} \ldots A_{2}^{T} A_{1}^{T}$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$

Definition. A square matrix A is said to be symmetric if $A^{T}=A$.
For example, any diagonal matrix is symmetric.
Proposition For any square matrix A the matrices $B=A A^{T}$ and $C=A+A^{T}$ are symmetric.

Proof:

$$
\begin{gathered}
B^{T}=\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}=B \\
C^{T}=\left(A+A^{T}\right)^{T}=A^{T}+\left(A^{T}\right)^{T}=A^{T}+A=C
\end{gathered}
$$

Determinants

Determinant is a scalar assigned to each square matrix.
Notation. The determinant of a matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ is denoted $\operatorname{det} A$ or

$$
\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
$$

Principal property: $\operatorname{det} A \neq 0$ if and only if a system of linear equations with the coefficient matrix A has a unique solution. Equivalently, $\operatorname{det} A \neq 0$ if and only if the matrix A is invertible.

Definition in low dimensions

Definition. $\operatorname{det}(a)=a, \quad\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$,
\(\left|\begin{array}{lll}a_{11} \& a_{12} \& a_{13}

a_{21} \& a_{22} \& a_{23}

a_{31} \& a_{32} \& a_{33}\end{array}\right|=\)| |
| ---: |
| |
| |
| |
| $-a_{11} a_{22} a_{22} a_{31}+a_{12} a_{23} a_{31}+a_{12} a_{21} a_{33}-a_{11} a_{32} a_{23} a_{32}$. |

$+:\left(\begin{array}{ccc}\boxed{*} & * & * \\ * & * & * \\ * & * & \boxed{*}\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.
$-:\left(\begin{array}{ccc}* & * & * \\ * & \boxed{*} & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right),\left(\begin{array}{ccc}* & * & * \\ * & * & * \\ * & * & *\end{array}\right)$.

Examples: 2×2 matrices

$$
\begin{aligned}
& \left|\begin{array}{rr}
1 & 0 \\
0 & 1
\end{array}\right|=1, \quad\left|\begin{array}{rr}
3 & 0 \\
0 & -4
\end{array}\right|=-12, \\
& \left|\begin{array}{rr}
-2 & 5 \\
0 & 3
\end{array}\right|=-6, \quad\left|\begin{array}{ll}
7 & 0 \\
5 & 2
\end{array}\right|=14, \\
& \left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1, \quad\left|\begin{array}{ll}
0 & 0 \\
4 & 1
\end{array}\right|=0, \\
& \left|\begin{array}{rr}
-1 & 3 \\
-1 & 3
\end{array}\right|=0, \quad\left|\begin{array}{ll}
2 & 1 \\
8 & 4
\end{array}\right|=0 .
\end{aligned}
$$

Examples: 3×3 matrices

$$
\begin{aligned}
& \left|\begin{array}{rrr}
3 & -2 & 0 \\
1 & 0 & 1 \\
-2 & 3 & 0
\end{array}\right|=3 \cdot 0 \cdot 0+(-2) \cdot 1 \cdot(-2)+0 \cdot 1 \cdot 3- \\
& -0 \cdot 0 \cdot(-2)-(-2) \cdot 1 \cdot 0-3 \cdot 1 \cdot 3=4-9=-5, \\
& \left|\begin{array}{rrr}
1 & 4 & 6 \\
0 & 2 & 5 \\
0 & 0 & 3
\end{array}\right|=1 \cdot 2 \cdot 3+4 \cdot 5 \cdot 0+6 \cdot 0 \cdot 0- \\
& -6 \cdot 2 \cdot 0-4 \cdot 0 \cdot 3-1 \cdot 5 \cdot 0=1 \cdot 2 \cdot 3=6 .
\end{aligned}
$$

General definition

The general definition of the determinant is quite complicated as there is no simple explicit formula.

There are several approaches to defining determinants. Approach 1 (original): an explicit (but very complicated) formula.
Approach 2 (axiomatic): we formulate properties that the determinant should have.
Approach 3 (inductive): the determinant of an $n \times n$ matrix is defined in terms of determinants of certain $(n-1) \times(n-1)$ matrices.

Classical definition

Definition. If $A=\left(a_{i j}\right)$ is an $n \times n$ matrix then

$$
\operatorname{det} A=\sum_{\pi \in S_{n}} \operatorname{sgn}(\pi) a_{1, \pi(1)} a_{2, \pi(2)} \ldots a_{n, \pi(n)}
$$

where π runs over S_{n}, the set of all permutations of $\{1,2, \ldots, n\}$, and $\operatorname{sgn}(\pi)$ denotes the sign of the permutation π.

Remarks. - A permutation of the set $\{1,2, \ldots, n\}$ is an invertible mapping of this set onto itself. There are $n!$ such mappings.

- The $\boldsymbol{\operatorname { s i g n }} \operatorname{sgn}(\pi)$ can be 1 or -1 . Its definition is rather complicated.

