MATH 323
 Linear Algebra

Lecture 8a:
Determinants (continued).

More properties of determinants

Determinants and matrix multiplication:

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B
$$

- if A and B are $n \times n$ matrices then

$$
\operatorname{det}(A B)=\operatorname{det}(B A)
$$

- if A is an invertible matrix then

$$
\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}
$$

Determinants and scalar multiplication:

- if A is an $n \times n$ matrix and $r \in \mathbb{R}$ then

$$
\operatorname{det}(r A)=r^{n} \operatorname{det} A
$$

Examples

$$
X=\left(\begin{array}{rrr}
-1 & 2 & 1 \\
0 & 2 & -2 \\
0 & 0 & -3
\end{array}\right), \quad Y=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 3 & 0 \\
2 & -2 & 1
\end{array}\right)
$$

$\operatorname{det} X=(-1) \cdot 2 \cdot(-3)=6, \quad \operatorname{det} Y=\operatorname{det} Y^{T}=3$, $\operatorname{det}(X Y)=6 \cdot 3=18, \quad \operatorname{det}(Y X)=3 \cdot 6=18$, $\operatorname{det}\left(Y^{-1}\right)=1 / 3, \quad \operatorname{det}\left(X Y^{-1}\right)=6 / 3=2$, $\operatorname{det}\left(X Y X^{-1}\right)=\operatorname{det} Y=3, \quad \operatorname{det}\left(X^{-1} Y^{-1} X Y\right)=1$, $\operatorname{det}(2 X)=2^{3} \operatorname{det} X=2^{3} \cdot 6=48$, $\operatorname{det}\left(-3 X^{T} X Y^{-4}\right)=(-3)^{3} \cdot 6 \cdot 6 \cdot 3^{-4}=-12$.

Row and column expansions

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A.

Theorem For any $1 \leq k, m \leq n$ we have that

$$
\begin{gathered}
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}, \\
(\text { expansion by } k \text { th row })
\end{gathered}
$$

$$
\operatorname{det} A=\sum_{i=1}^{n}(-1)^{i+m} a_{i m} \operatorname{det} M_{i m}
$$

(expansion by mth column)

Determinants and the inverse matrix

Given an $n \times n$ matrix $A=\left(a_{i j}\right)$, let $M_{i j}$ denote the $(n-1) \times(n-1)$ submatrix obtained by deleting the i th row and the j th column of A. The cofactor matrix of A is an $n \times n$ matrix $\widetilde{A}=\left(\alpha_{i j}\right)$ defined by $\alpha_{i j}=(-1)^{i+j} \operatorname{det} M_{i j}$.

Theorem $\widetilde{A}^{T} A=A \widetilde{A}^{T}=(\operatorname{det} A) I$.
Sketch of the proof: $A \widetilde{A}^{T}=(\operatorname{det} A) I$ means that

$$
\begin{aligned}
& \sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} M_{k j}=\operatorname{det} A \quad \text { for all } k \\
& \sum_{j=1}^{n}(-1)^{k+j} a_{m j} \operatorname{det} M_{k j}=0 \quad \text { for } m \neq k
\end{aligned}
$$

Indeed, the 1 st equality is the expansion of $\operatorname{det} A$ by the k th row. The 2 nd equality is an analogous expansion of $\operatorname{det} B$, where the matrix B is obtained from A by replacing its k th row with a copy of the m th row (clearly, $\operatorname{det} B=0$). $\widetilde{A}^{T} A=(\operatorname{det} A) /$ is verified similarly, using column expansions.
Corollary If $\operatorname{det} A \neq 0$ then $A^{-1}=(\operatorname{det} A)^{-1} \widetilde{A}^{T}$.

