MATH 323
 Linear Algebra
 Lecture 17:
 Matrix of a linear transformation. Similar matrices.

Matrix transformations

Any $m \times n$ matrix A gives rise to a transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $L(\mathbf{x})=A \mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^{n}$ and $L(\mathbf{x}) \in \mathbb{R}^{m}$ are regarded as column vectors. This transformation is linear.

Example. $L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 2 \\ 3 & 4 & 7 \\ 0 & 5 & 8\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$.
Let $\mathbf{e}_{1}=(1,0,0), \mathbf{e}_{2}=(0,1,0), \mathbf{e}_{3}=(0,0,1)$ be the standard basis for \mathbb{R}^{3}. We have that $L\left(\mathbf{e}_{1}\right)=(1,3,0)$, $L\left(\mathbf{e}_{2}\right)=(0,4,5), \quad L\left(\mathbf{e}_{3}\right)=(2,7,8)$. Thus $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$ are columns of the matrix.

Problem. Find a linear mapping $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $L\left(\mathbf{e}_{1}\right)=(1,1), L\left(\mathbf{e}_{2}\right)=(0,-2)$, $L\left(\mathbf{e}_{3}\right)=(3,0)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ is the standard basis for \mathbb{R}^{3}.

$$
\begin{gathered}
L(x, y, z)=L\left(x \mathbf{e}_{1}+y \mathbf{e}_{2}+z \mathbf{e}_{3}\right) \\
=x L\left(\mathbf{e}_{1}\right)+y L\left(\mathbf{e}_{2}\right)+z L\left(\mathbf{e}_{3}\right) \\
=x(1,1)+y(0,-2)+z(3,0)=(x+3 z, x-2 y) \\
L(x, y, z)=\binom{x+3 z}{x-2 y}=\left(\begin{array}{rrr}
1 & 0 & 3 \\
1 & -2 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{gathered}
$$

Columns of the matrix are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), L\left(\mathbf{e}_{3}\right)$.

Theorem Suppose $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x})=A \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Columns of A are vectors $L\left(\mathbf{e}_{1}\right), L\left(\mathbf{e}_{2}\right), \ldots, L\left(\mathbf{e}_{n}\right)$, where $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ is the standard basis for \mathbb{R}^{n}.

$$
\begin{gathered}
\mathbf{y}=A \mathbf{x} \Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \\
\Longleftrightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+x_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+x_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
\end{gathered}
$$

Let V and W be vector spaces and S be a subset of V.

Theorem (i) If S spans V, then any linear transformation $L: V \rightarrow W$ is uniquely determined by its restriction to S.
(ii) If S is linearly independent then any function $L: S \rightarrow W$ can be extended to a linear transformation from V to W.
(iii) If S is a basis for V then any function $L: S \rightarrow W$ can be uniquely extended to a linear transformation from V to W.

Idea of the proof: If $\mathbf{v}=r_{1} \mathbf{v}_{1}+r_{2} \mathbf{v}_{2}+\cdots+r_{n} \mathbf{v}_{n}$, where $\mathbf{v}_{i} \in S, r_{i} \in \mathbb{R}$, then $L(\mathbf{v})=r_{1} L\left(\mathbf{v}_{1}\right)+r_{2} L\left(\mathbf{v}_{2}\right)+\cdots+r_{n} L\left(\mathbf{v}_{n}\right)$ for any linear map $L: V \rightarrow W$.

Change of coordinates (revisited)

Let V be a vector space.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be another basis for V and $g_{2}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to itself. Hence it's represented as $\mathbf{x} \mapsto U \mathbf{x}$, where U is an $n \times n$ matrix.
U is called the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2} \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \mathbf{u}_{2} \ldots, \mathbf{u}_{n}$. Columns of U are coordinates of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$.

Matrix of a linear transformation

Let V, W be vector spaces and $f: V \rightarrow W$ be a linear map.
Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and $g_{1}: V \rightarrow \mathbb{R}^{n}$ be the coordinate mapping corresponding to this basis.

Let $\mathbf{w}_{1}, \mathbf{w}_{2}, \ldots, \mathbf{w}_{m}$ be a basis for W and $g_{2}: W \rightarrow \mathbb{R}^{m}$ be the coordinate mapping corresponding to this basis.

The composition $g_{2} \circ f \circ g_{1}^{-1}$ is a linear mapping of \mathbb{R}^{n} to \mathbb{R}^{m}. Hence it's represented as $\mathbf{x} \mapsto A \mathbf{x}$, where A is an $m \times n$ matrix.
A is called the matrix of f with respect to bases $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$. Columns of A are coordinates of vectors $f\left(\mathbf{v}_{1}\right), \ldots, f\left(\mathbf{v}_{n}\right)$ with respect to the basis $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$.

Examples. - $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}, \quad(D p)(x)=p^{\prime}(x)$.
Let A_{D} be the matrix of D with respect to the bases $1, x, x^{2}$ and $1, x$. Columns of A_{D} are coordinates of polynomials $D 1, D x, D x^{2}$ w.r.t. the basis $1, x$.
$D 1=0, D x=1, D x^{2}=2 x \Longrightarrow A_{D}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$

- $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}, \quad(L p)(x)=p(x+1)$.

Let A_{L} be the matrix of L w.r.t. the basis $1, x, x^{2}$. $L 1=1, L x=1+x, L x^{2}=(x+1)^{2}=1+2 x+x^{2}$.
$\Longrightarrow A_{L}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right)$

Problem. Consider a linear operator L on the vector space of 2×2 matrices given by

$$
L\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

Find the matrix of L with respect to the basis

$$
E_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), E_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), E_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), E_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Let M_{L} denote the desired matrix.
It follows from the definition that M_{L} is a 4×4 matrix whose columns are coordinates of the matrices

$$
L\left(E_{1}\right), L\left(E_{2}\right), L\left(E_{3}\right), L\left(E_{4}\right)
$$

with respect to the basis $E_{1}, E_{2}, E_{3}, E_{4}$.

$$
\begin{aligned}
& L\left(E_{1}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
3 & 0
\end{array}\right)=1 E_{1}+0 E_{2}+3 E_{3}+0 E_{4}, \\
& L\left(E_{2}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 3
\end{array}\right)=0 E_{1}+1 E_{2}+0 E_{3}+3 E_{4}, \\
& L\left(E_{3}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
4 & 0
\end{array}\right)=2 E_{1}+0 E_{2}+4 E_{3}+0 E_{4}, \\
& L\left(E_{4}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 2 \\
0 & 4
\end{array}\right)=0 E_{1}+2 E_{2}+0 E_{3}+4 E_{4} .
\end{aligned}
$$

Therefore

$$
M_{L}=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right) .
$$

Thus the relation

$$
\left(\begin{array}{ll}
x_{1} & y_{1} \\
z_{1} & w_{1}
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
x & y \\
z & w
\end{array}\right)
$$

is equivalent to the relation

$$
\left(\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1} \\
w_{1}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2 \\
3 & 0 & 4 & 0 \\
0 & 3 & 0 & 4
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right) .
$$

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let N be the desired matrix. Columns of N are coordinates of the vectors $L\left(\mathbf{v}_{1}\right)$ and $L\left(\mathbf{v}_{2}\right)$ w.r.t. the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$.

$$
L\left(\mathbf{v}_{1}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{3}{1}=\binom{4}{1}, \quad L\left(\mathbf{v}_{2}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{1} .
$$

Clearly, $L\left(\mathbf{v}_{2}\right)=\mathbf{v}_{1}=1 \mathbf{v}_{1}+0 \mathbf{v}_{2}$.
$L\left(\mathbf{v}_{1}\right)=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2} \Longleftrightarrow\left\{\begin{array}{l}3 \alpha+2 \beta=4 \\ \alpha+\beta=1\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha=2 \\ \beta=-1\end{array}\right.\right.$
Thus $N=\left(\begin{array}{rr}2 & 1 \\ -1 & 0\end{array}\right)$.

Change of basis for a linear operator

Let $L: V \rightarrow V$ be a linear operator on a vector space V.
Let A be the matrix of L relative to a basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ for V. Let B be the matrix of L relative to another basis $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$ for V.

Let U be the transition matrix from the basis $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ to $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{n}$.

It follows that $U A \mathbf{x}=B U \mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^{n} \Longrightarrow U A=B U$.
Then $A=U^{-1} B U$ and $B=U A U^{-1}$.

Problem. Consider a linear operator $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
L\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y} .
$$

Find the matrix of L with respect to the basis
$\mathbf{v}_{1}=(3,1), \mathbf{v}_{2}=(2,1)$.
Let S be the matrix of L with respect to the standard basis, N be the matrix of L with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$, and U be the transition matrix from $\mathbf{v}_{1}, \mathbf{v}_{2}$ to $\mathbf{e}_{1}, \mathbf{e}_{2}$. Then $N=U^{-1} S U$.

$$
\begin{gathered}
S=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right), \\
N=U^{-1} S U=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
=\left(\begin{array}{rr}
1 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)=\left(\begin{array}{rr}
2 & 1 \\
-1 & 0
\end{array}\right) .
\end{gathered}
$$

Similarity of matrices

Definition. An $n \times n$ matrix B is said to be similar to an $n \times n$ matrix A if $B=S^{-1} A S$ for some nonsingular $n \times n$ matrix S.

Remark. Two $n \times n$ matrices are similar if and only if they represent the same linear operator on \mathbb{R}^{n} with respect to different bases.

Theorem Similarity is an equivalence relation, which means that (i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B;
(iii) if A is similar to B and B is similar to C, then A is similar to C.

Corollary The set of $n \times n$ matrices is partitioned into disjoint subsets (called similarity classes) such that all matrices in the same subset are similar to each other while matrices from different subsets are never similar.

