
MATH 323

Linear Algebra

Lecture 18a:
Similar matrices (continued).



Similarity of matrices

Definition. An n×n matrix B is said to be similar to an n×n

matrix A if B = S−1AS for some nonsingular n×n matrix S .

Remark. Two n×n matrices are similar if and only if they
represent the same linear operator on R

n with respect to
different bases.

Theorem Similarity is an equivalence relation, which means
that (i) any square matrix A is similar to itself;
(ii) if B is similar to A, then A is similar to B ;
(iii) if A is similar to B and B is similar to C , then A is
similar to C .

Corollary The set of n×n matrices is partitioned into disjoint
subsets (called similarity classes) such that all matrices in the
same subset are similar to each other while matrices from
different subsets are never similar.



Theorem Similarity is an equivalence relation, i.e.,
(i) any square matrix A is similar to itself;

(ii) if B is similar to A, then A is similar to B ;
(iii) if A is similar to B and B is similar to C , then

A is similar to C .

Proof: (i) A = I−1AI .

(ii) If B = S−1AS then A = SBS−1 = (S−1)−1BS−1

= S−1

1
BS1, where S1 = S−1.

(iii) If A = S−1BS and B = T−1CT then
A = S−1(T−1CT )S = (S−1T−1)C (TS) = (TS)−1C (TS)
= S−1

2
CS2, where S2 = TS .

Theorem If A and B are similar matrices then they
have the same (i) determinant, (ii) trace = the

sum of diagonal entries, (iii) rank, and (iv) nullity.



Linear transformations of R2

Any linear mapping f : R2 → R
2 is represented as

multiplication of a 2-dimensional column vector by a

2×2 matrix: f (x) = Ax or

f

(

x

y

)

=

(

a b

c d

)(

x

y

)

.

Linear transformations corresponding to particular

matrices can have various geometric properties.
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Texture Reflection about
the line x − y = 0
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Vertical projection on
the horizontal axis
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Horizontal projection
on the line x + y = 0
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