MATH 323

Lecture 19:

Eigenvalues and eigenvectors (continued).

Linear Algebra

Diagonalization.

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an **eigenvalue** of the matrix A if $A\mathbf{v} = \lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^n$.

The vector \mathbf{v} is called an **eigenvector** of A belonging to (or associated with) the eigenvalue λ .

If λ is an eigenvalue of A then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the **eigenspace** of A corresponding to λ . The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $det(A - \lambda I) = 0$ is called the **characteristic** equation of A.

Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda) = \det(A - \lambda I)$ is a polynomial of degree n. It is called the **characteristic polynomial** of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

Characteristic equation:
$$\begin{vmatrix} 1-\lambda & 1 & -1 \\ 1 & 1-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{vmatrix} = 0.$$

$$(2 - \lambda) \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = 0.$$

$$((1 - \lambda)^2 - 1)(2 - \lambda) = 0 \iff -\lambda(2 - \lambda)^2 = 0$$

$$\implies \lambda_1 = 0, \quad \lambda_2 = 2.$$

$$A\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
Convert the matrix to reduced row echelon form:

$$\begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$A\mathbf{x} = \mathbf{0} \iff \begin{cases} x + y = 0, \\ z = 0. \end{cases}$$

The general solution is (-t, t, 0) = t(-1, 1, 0), $t \in \mathbb{R}$. Thus $\mathbf{v}_1 = (-1, 1, 0)$ is an eigenvector associated with the eigenvalue 0. The corresponding eigenspace is the line spanned by \mathbf{v}_1 .

$$(A-2I)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1 & -1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & -1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \iff x - y + z = 0.$$

The general solution is x=t-s, y=t, z=s, where $t,s\in\mathbb{R}$. Equivalently,

$$\mathbf{x} = (t - s, t, s) = t(1, 1, 0) + s(-1, 0, 1).$$

Thus $\mathbf{v}_2 = (1, 1, 0)$ and $\mathbf{v}_3 = (-1, 0, 1)$ are eigenvectors associated with the eigenvalue 2.

The corresponding eigenspace is the plane spanned by \mathbf{v}_2 and \mathbf{v}_3 .

Summary.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenvalue 0 is *simple*: the corresponding eigenspace is a line.
- The eigenvalue 2 is of *multiplicity* 2: the corresponding eigenspace is a plane.
- Eigenvectors $\mathbf{v}_1 = (-1, 1, 0)$, $\mathbf{v}_2 = (1, 1, 0)$, and $\mathbf{v}_3 = (-1, 0, 1)$ of the matrix A form a basis for \mathbb{R}^3 .
- Geometrically, the map $\mathbf{x} \mapsto A\mathbf{x}$ is the projection on the plane $\mathrm{Span}(\mathbf{v}_2,\mathbf{v}_3)$ along the lines parallel to \mathbf{v}_1 with the subsequent scaling by a factor of 2.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \to V$ be a linear operator. A number λ is called an **eigenvalue** of the operator L if $L(\mathbf{v}) = \lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an **eigenvector** of L associated with the eigenvalue λ . (If V is a functional vector space then eigenvectors are usually called **eigenfunctions**.)

If $V = \mathbb{R}^n$ then the linear operator L is given by $L(\mathbf{x}) = A\mathbf{x}$, where A is an $n \times n$ matrix (and \mathbf{x} is regarded a column vector). In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \to V$ be a linear operator.

For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x}) = \lambda \mathbf{x}$.

Then V_{λ} is a *subspace* of V since V_{λ} is the *kernel* of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x}) - \lambda \mathbf{x}$.

 V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ . In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq \{\mathbf{0}\}$.

If $V_{\lambda} \neq \{0\}$ then it is called the **eigenspace** of L corresponding to the eigenvalue λ .

Example. $V = C^{\infty}(\mathbb{R}), D: V \to V, Df = f'.$

A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f'(x) = \lambda f(x)$ for all $x \in \mathbb{R}$.

It follows that $f(x) = ce^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D. The corresponding eigenspace is spanned by $e^{\lambda x}$. Example. $V = C^{\infty}(\mathbb{R}), \ L: V \to V, \ Lf = f''.$

$$Lf = \lambda f \iff f''(x) - \lambda f(x) = 0 \text{ for all } x \in \mathbb{R}.$$

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional. Note that $L=D^2$, hence $Df=\mu f \implies Lf=\mu^2 f$.

If $\lambda>0$ then $V_{\lambda}=\mathrm{Span}(e^{\mu x},e^{-\mu x})$, where $\mu=\sqrt{\lambda}$.

If $\lambda < 0$ then $V_{\lambda} = \operatorname{Span}(\sin(\mu x), \cos(\mu x))$, where $\mu = \sqrt{-\lambda}$.

If $\lambda = 0$ then $V_{\lambda} = \operatorname{Span}(1, x)$.

Suppose $L: V \to V$ is a linear operator on a **finite-dimensional** vector space V.

Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be a basis for V and $g: V \to \mathbb{R}^n$ be the corresponding coordinate mapping. Let A be the matrix of L with respect to this basis. Then

$$L(\mathbf{v}) = \lambda \mathbf{v} \iff A g(\mathbf{v}) = \lambda g(\mathbf{v}).$$

Hence the eigenvalues of L coincide with those of the matrix A. Moreover, the associated eigenvectors of A are coordinates of the eigenvectors of L.

Definition. The characteristic polynomial $p(\lambda) = \det(A - \lambda I)$ of the matrix A is called the **characteristic polynomial** of the operator L.

Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$. Then $A = UBU^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ to $\mathbf{u}_1, \ldots, \mathbf{u}_n$. We have to show that $\det(A - \lambda I) = \det(B - \lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$\det(A - \lambda I) = \det(UBU^{-1} - \lambda I)$$

$$= \det(UBU^{-1} - U(\lambda I)U^{-1}) = \det(U(B - \lambda I)U^{-1})$$

$$= \det(U) \det(B - \lambda I) \det(U^{-1}) = \det(B - \lambda I).$$

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L:V\to V$ be a linear operator. Let $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$L(\mathbf{v}_i) = \lambda_i \mathbf{v}_i \iff A = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & \\ & & \ddots \\ O & & & \lambda_n \end{pmatrix}$$

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_k$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Corollary 1 If $\lambda_1, \lambda_2, \dots, \lambda_k$ are distinct real numbers, then the functions $e^{\lambda_1 x}, e^{\lambda_2 x}, \dots, e^{\lambda_k x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ given by Df = f'. Then $e^{\lambda_1 x}, \dots, e^{\lambda_k x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_1, \dots, \lambda_k$. By the theorem, the eigenfunctions are linearly independent.

How to find a basis of eigenvectors

Corollary 2 Suppose $\lambda_1, \lambda_2, \ldots, \lambda_k$ are all eigenvalues of a linear operator $L: V \to V$. For any $1 \le i \le k$, let S_i be a basis for the eigenspace associated to the eigenvalue λ_i . Then these bases are disjoint and the union $S = S_1 \cup S_2 \cup \cdots \cup S_k$ is a linearly independent set.

Moreover, if the vector space V admits a basis consisting of eigenvectors of L, then S is such a basis.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $\det(A - \lambda I) = 0$ has n distinct roots. Then (i) there is a basis for \mathbb{R}^n consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for *V* formed by eigenvectors of *L*.

The operator *L* is **diagonalizable** if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as

 $A = UBU^{-1}$, where the matrix B is diagonal;

• there exists a basis for \mathbb{R}^n formed by eigenvectors of A.

The matrix A is **diagonalizable** if it satisfies these conditions.

Example.
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 1 and 3.
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_1 = (-1, 1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_2 = (1, 1)$.
 - Eigenvectors \mathbf{v}_1 and \mathbf{v}_2 form a basis for \mathbb{R}^2 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}.$$

Notice that U is the transition matrix from the basis $\mathbf{v}_1, \mathbf{v}_2$ to the standard basis.

Example.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
.

- The matrix A has two eigenvalues: 0 and 2.
- The eigenspace for 0 is one-dimensional; it has a basis $S_1 = \{ \mathbf{v}_1 \}$, where $\mathbf{v}_1 = (-1, 1, 0)$.
- The eigenspace for 2 is two-dimensional; it has a basis $S_2 = \{\mathbf{v}_2, \mathbf{v}_3\}$, where $\mathbf{v}_2 = (1, 1, 0)$, $\mathbf{v}_3 = (-1, 0, 1)$.
- The union $S_1 \cup S_2 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^3 .

Thus the matrix A is diagonalizable. Namely, $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \qquad U = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

There are **two obstructions** to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.

Example 1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

 $\det(A - \lambda I) = (\lambda - 1)^2$. Hence $\lambda = 1$ is the only eigenvalue. The associated eigenspace is the line t(1,0).

Example 2.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
.

 $\det(A - \lambda I) = \lambda^2 + 1.$

⇒ no real eigenvalues or eigenvectors

(However there are *complex* eigenvalues/eigenvectors.)

To diagonalize an $n \times n$ matrix A is to find a diagonal matrix B and an invertible matrix U such that $A = UBU^{-1}$.

Suppose there exists a basis $\mathbf{v}_1, \dots, \mathbf{v}_n$ for \mathbb{R}^n consisting of eigenvectors of A. That is, $A\mathbf{v}_k = \lambda_k \mathbf{v}_k$, where $\lambda_k \in \mathbb{R}$.

Then $A = UBU^{-1}$, where $B = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n)$ and U is a transition matrix whose columns are vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.

Example.
$$A = \begin{pmatrix} 4 & 3 \\ 0 & 1 \end{pmatrix}$$
. $det(A - \lambda I) = (4 - \lambda)(1 - \lambda)$.

Eigenvalues: $\lambda_1 = 4$, $\lambda_2 = 1$.

Associated eigenvectors:
$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Thus $A = UBU^{-1}$, where

$$B = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad U = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Suppose we have a problem that involves a square matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal matrix is simple. Then the diagonalization may help in solving this problem (or may not). Namely, it may reduce the case of a diagonalizable matrix to that of a diagonal one.

An example of such a problem is, given a square matrix A, to find its power A^k :

$$A = \begin{pmatrix} s_1 & & & O \\ & s_2 & & \\ & & \ddots & \\ O & & & s_n \end{pmatrix} \implies A^k = \begin{pmatrix} s_1^k & & & O \\ & s_2^k & & \\ & & \ddots & \\ O & & & s_n^k \end{pmatrix}$$