MATH 323

Linear Algebra

Lecture 21:
Orthogonal complement.
Orthogonal projection.
Least squares problems.

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are said to be **orthogonal** (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x} \cdot \mathbf{y} = 0$.

Definition 2. A vector $\mathbf{x} \in \mathbb{R}^n$ is said to be **orthogonal** to a nonempty set $Y \subset \mathbb{R}^n$ (denoted $\mathbf{x} \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^n$ are said to be **orthogonal** (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y} = 0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^n$. The **orthogonal complement** of S, denoted S^{\perp} , is the set of all vectors $\mathbf{x} \in \mathbb{R}^n$ that are orthogonal to S. That is, S^{\perp} is the largest subset of \mathbb{R}^n orthogonal to S.

Theorem 1 S^{\perp} is a subspace of \mathbb{R}^n .

Note that $S \subset (S^{\perp})^{\perp}$, hence $\mathrm{Span}(S) \subset (S^{\perp})^{\perp}$.

Theorem 2 $(S^{\perp})^{\perp} = \operatorname{Span}(S)$. In particular, for any subspace V we have $(V^{\perp})^{\perp} = V$.

Example. Consider a line $L = \{(x,0,0) \mid x \in \mathbb{R}\}$ and a plane $\Pi = \{(0,y,z) \mid y,z \in \mathbb{R}\}$ in \mathbb{R}^3 . Then $L^{\perp} = \Pi$ and $\Pi^{\perp} = L$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let

$$N(A) = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = \mathbf{0}\},$$

$$R(A) = \{ \mathbf{b} \in \mathbb{R}^m \mid \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}.$$

R(A) is the range of a linear mapping $L: \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{x}) = A\mathbf{x}$. N(A) is the kernel of L.

Also, N(A) is the nullspace of the matrix A while R(A) is the column space of A. The row space of A is $R(A^T)$.

The subspaces $N(A), R(A^T) \subset \mathbb{R}^n$ and $R(A), N(A^T) \subset \mathbb{R}^m$ are **fundamental subspaces** associated to the matrix A.

Theorem $N(A) = R(A^T)^{\perp}$, $N(A^T) = R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.

Proof: The equality $A\mathbf{x} = \mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A) = S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp} = \operatorname{Span}(S)^{\perp} = R(A^{T})^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^n . Then dim $V + \dim V^{\perp} = n$.

Proof: Pick a basis $\mathbf{v}_1, \ldots, \mathbf{v}_k$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_1, \ldots, \mathbf{v}_k$. Then $V = R(A^T)$, hence $V^{\perp} = N(A)$. Consequently, dim V and dim V^{\perp} are rank and nullity of A. Therefore dim $V + \dim V^{\perp}$ equals the number of columns of A, which is n.

Problem. Let V be the plane spanned by vectors $\mathbf{v}_1 = (1,1,0)$ and $\mathbf{v}_2 = (0,1,1)$. Find V^{\perp} .

The orthogonal complement to V is the same as the orthogonal complement of the set $\{\mathbf{v}_1,\mathbf{v}_2\}$. A vector $\mathbf{u}=(x,y,z)$ belongs to the latter if and only if

$$\begin{cases} \mathbf{u} \cdot \mathbf{v}_1 = 0 \\ \mathbf{u} \cdot \mathbf{v}_2 = 0 \end{cases} \iff \begin{cases} x + y = 0 \\ y + z = 0 \end{cases}$$

Alternatively, the subspace V is the row space of the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix},$$

hence V^{\perp} is the nullspace of A.

The general solution of the system (or, equivalently, the general element of the nullspace of A) is (t, -t, t) = t(1, -1, 1), $t \in \mathbb{R}$. Thus V^{\perp} is the straight line spanned by the vector (1, -1, 1).

Orthogonal projection

Theorem 1 Let V be a subspace of \mathbb{R}^n . Then any vector $\mathbf{x} \in \mathbb{R}^n$ is uniquely represented as $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$.

Idea of the proof: Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be a basis for V and $\mathbf{w}_1, \ldots, \mathbf{w}_m$ be a basis for V^{\perp} . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{w}_1, \ldots, \mathbf{w}_m$ is a linearly independent set. Hence it is a basis for \mathbb{R}^n .

In the above expansion, \mathbf{p} is called the **orthogonal projection** of the vector \mathbf{x} onto the subspace V.

Theorem 2 $\|\mathbf{x} - \mathbf{v}\| > \|\mathbf{x} - \mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.

Thus $\|\mathbf{o}\| = \|\mathbf{x} - \mathbf{p}\| = \min_{\mathbf{v} \in V} \|\mathbf{x} - \mathbf{v}\|$ is the **distance** from the vector \mathbf{x} to the subspace V.

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$.

Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} .

 $\mathbf{p} =$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, with $\mathbf{y} \neq \mathbf{0}$.

Then there exists a unique decomposition $\mathbf{x} = \mathbf{p} + \mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y} .

We have
$$\mathbf{p} = \alpha \mathbf{y}$$
 for some $\alpha \in \mathbb{R}$. Then
$$0 = \mathbf{o} \cdot \mathbf{y} = (\mathbf{x} - \alpha \mathbf{y}) \cdot \mathbf{y} = \mathbf{x} \cdot \mathbf{y} - \alpha \mathbf{y} \cdot \mathbf{y}.$$

$$\implies \alpha = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \implies \left[\mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} \right]$$

Problem. Find the distance from the point $\mathbf{x} = (3,1)$ to the line spanned by $\mathbf{y} = (2,-1)$.

Consider the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o}\perp\mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o} .

$$\mathbf{p} = \frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y} = \frac{5}{5} (2, -1) = (2, -1),$$

$$\mathbf{o} = \mathbf{x} - \mathbf{p} = (3, 1) - (2, -1) = (1, 2), \quad ||\mathbf{o}|| = \sqrt{5}.$$

Problem. Find the point on the line y = -x that is closest to the point (3, 4).

The required point is the projection \mathbf{p} of $\mathbf{v} = (3,4)$ on the vector $\mathbf{w} = (1,-1)$ spanning the line y = -x.

$$\mathbf{p} = \frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \, \mathbf{w} = \frac{-1}{2} \left(1, -1 \right) = \left(-\frac{1}{2}, \frac{1}{2} \right).$$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_1=(1,1,0)$ and $\mathbf{v}_2=(0,1,1)$.

(i) Find the orthogonal projection of the vector $\mathbf{x} = (4, 0, -1)$ onto the plane Π .

(ii) Find the distance from \mathbf{x} to Π .

We have $\mathbf{x} = \mathbf{p} + \mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$. Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.

We have $\mathbf{p} = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$ for some $\alpha, \beta \in \mathbb{R}$. Then $\mathbf{o} = \mathbf{x} - \mathbf{p} = \mathbf{x} - \alpha \mathbf{v}_1 - \beta \mathbf{v}_2$.

 $\begin{cases} \mathbf{o} \cdot \mathbf{v}_1 = 0 \\ \mathbf{o} \cdot \mathbf{v}_2 = 0 \end{cases} \iff \begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$

$$\mathbf{x} = (4, 0, -1), \quad \mathbf{v}_1 = (1, 1, 0), \quad \mathbf{v}_2 = (0, 1, 1)$$

$$\begin{cases} \alpha(\mathbf{v}_1 \cdot \mathbf{v}_1) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_1) = \mathbf{x} \cdot \mathbf{v}_1 \\ \alpha(\mathbf{v}_1 \cdot \mathbf{v}_2) + \beta(\mathbf{v}_2 \cdot \mathbf{v}_2) = \mathbf{x} \cdot \mathbf{v}_2 \end{cases}$$

$$\iff \begin{cases} 2\alpha + \beta = 4 \\ \alpha + 2\beta = -1 \end{cases} \iff \begin{cases} \alpha = 3 \\ \beta = -2 \end{cases}$$

$$\alpha + 2\beta = -1 \qquad \beta = -2$$

$$\mathbf{p} = 3\mathbf{v}_1 - 2\mathbf{v}_2 = (3, 1, -2)$$

$$\mathbf{p} = 3\mathbf{v}_1 - 2\mathbf{v}_2 = (3, 1, -2)$$

 $\mathbf{o} = \mathbf{x} - \mathbf{p} = (1, -1, 1)$

 $\|{\bf o}\| = \sqrt{3}$

Overdetermined system of linear equations:

$$\begin{cases} x + 2y = 3 \\ 3x + 2y = 5 \\ x + y = 2.09 \end{cases} \iff \begin{cases} x + 2y = 3 \\ -4y = -4 \\ -y = -0.91 \end{cases}$$

No solution: inconsistent system

Assume that a solution (x_0, y_0) does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.

Problem. Find a good approximation of (x_0, y_0) .

One approach is the **least squares fit**. Namely, we look for a pair (x, y) that minimizes the sum $(x + 2y - 3)^2 + (3x + 2y - 5)^2 + (x + y - 2.09)^2$.

Least squares solution

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff A\mathbf{x} = \mathbf{b}$$

For any $\mathbf{x} \in \mathbb{R}^n$ define a **residual** $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$.

The **least squares solution** \mathbf{x} to the system is the one that minimizes $||r(\mathbf{x})||$ (or, equivalently, $||r(\mathbf{x})||^2$).

$$||r(\mathbf{x})||^2 = \sum_{i=1}^m (a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n - b_i)^2$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$.

Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A\mathbf{x} = \mathbf{b}$ if and only if it is a solution of the associated **normal system** $A^T A \mathbf{x} = A^T \mathbf{b}$.

Proof: $A\mathbf{x}$ is an arbitrary vector in R(A), the column space of A. Hence the length of $r(\mathbf{x}) = \mathbf{b} - A\mathbf{x}$ is minimal if $A\mathbf{x}$ is the orthogonal projection of \mathbf{b} onto R(A). That is, if $r(\mathbf{x})$ is orthogonal to R(A).

We know that $\{\text{row space}\}^{\perp} = \{\text{nullspace}\}\$ for any matrix. In particular, $R(A)^{\perp} = N(A^{T})$, the nullspace of the transpose matrix of A. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if $A^{T}r(\hat{\mathbf{x}}) = \mathbf{0} \iff A^{T}(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0} \iff A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b}$.

Corollary The normal system $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent.

Find the least squares solution to

$$\begin{cases} x + 2y = 3\\ 3x + 2y = 5\\ x + y = 2.09 \end{cases}$$

$$x + 2y =$$

 $+ y = 2$
 $\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x \end{pmatrix}$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 3 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \\ 2 & 09 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

$$\begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 2.09 \end{pmatrix}$$

 $\begin{pmatrix} 11 & 9 \\ 9 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 20.09 \\ 18.09 \end{pmatrix} \iff \begin{cases} x = 1 \\ y = 1.01 \end{cases}$

Problem. Find the constant function that is the least squares fit to the following data

$$f(x) = c \implies \begin{cases} c = 1 \\ c = 0 \\ c = 1 \\ c = 2 \end{cases} \implies \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} (c) = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$(1,1,1,1) egin{pmatrix} 1 \ 1 \ 1 \ 1 \ 1 \end{pmatrix} (c) = (1,1,1,1) egin{pmatrix} 1 \ 0 \ 1 \ 2 \end{pmatrix}$$

$$c = \frac{1}{4}(1+0+1+2) = 1$$
 (mean arithmetic value)

Find the linear polynomial that is the least squares fit to the following data

$$f(x) \parallel 1 \mid 0 \mid 1 \mid 2$$

$$\begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \end{cases} \Rightarrow \begin{cases} c_1 = 1 \\ c_1 + c_2 = 0 \end{cases} \Rightarrow$$

$$f(x) = c_1 + c_2 x \implies egin{cases} c_1 = 1 \ c_1 + c_2 = 0 \ c_1 + 2c_2 = 1 \ c_1 + 3c_2 = 2 \end{cases} \implies egin{cases} 1 & 0 \ 1 & 1 \ 1 & 2 \ 1 & 3 \end{pmatrix} egin{cases} c_1 \ c_2 \end{pmatrix} = egin{cases} 1 \ 0 \ 1 \ 2 \ 1 \end{cases}$$

$$(x) = c_1 + c_2 x \implies \left\{ egin{array}{l} c_1 = 1 \ c_1 + c_2 = 0 \ c_1 + 2c_2 = 1 \ c_1 + 3c_2 = 2 \end{array}
ight.$$

$$(x) = c_1 + c_2 x \implies \begin{cases} c_1 - 1 \\ c_1 + c_2 = 0 \\ c_1 + 2c_2 = 1 \\ c_1 + 3c_2 = 2 \end{cases} \implies$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 6 \\ 6 & 14 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \end{pmatrix} \iff \begin{cases} c_1 = 0.4 \\ c_2 = 0.4 \end{cases}$$

Problem. Find the quadratic polynomial that is the least squares fit to the following data

$$f(x) = c_1 + c_2 x + c_3 x$$

$$f(x) = c_1 + c_2 x + c_3 x^2$$

$$\Rightarrow \begin{cases} c_1 = 1 \\ c_1 + c_2 + c_3 = 0 \\ c_1 + 2c_2 + 4c_3 = 1 \\ c_1 + 3c_2 + 9c_3 = 2 \end{cases} \Rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 6 & 14 \\ 6 & 14 & 36 \\ 14 & 36 & 98 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 8 \\ 22 \end{pmatrix} \iff \begin{cases} c_1 = 0.9 \\ c_2 = -1.1 \\ c_3 = 0.5 \end{cases}$$

