> MATH 323
> Linear Algebra
> Lecture 21:
> Orthogonal complement.
> Orthogonal projection.
> Least squares problems.

Orthogonality

Definition 1. Vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are said to be orthogonal (denoted $\mathbf{x} \perp \mathbf{y}$) if $\mathbf{x \cdot y = 0}$.

Definition 2. A vector $\mathrm{x} \in \mathbb{R}^{n}$ is said to be orthogonal to a nonempty set $Y \subset \mathbb{R}^{n}$ (denoted $\mathbf{x} \perp Y)$ if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{y} \in Y$.

Definition 3. Nonempty sets $X, Y \subset \mathbb{R}^{n}$ are said to be orthogonal (denoted $X \perp Y$) if $\mathbf{x} \cdot \mathbf{y}=0$ for any $\mathbf{x} \in X$ and $\mathbf{y} \in Y$.

Orthogonal complement

Definition. Let $S \subset \mathbb{R}^{n}$. The orthogonal complement of S, denoted S^{\perp}, is the set of all vectors $\mathbf{x} \in \mathbb{R}^{n}$ that are orthogonal to S. That is, S^{\perp} is the largest subset of \mathbb{R}^{n} orthogonal to S.

Theorem $1 S^{\perp}$ is a subspace of \mathbb{R}^{n}.
Note that $S \subset\left(S^{\perp}\right)^{\perp}$, hence $\operatorname{Span}(S) \subset\left(S^{\perp}\right)^{\perp}$.
Theorem $2\left(S^{\perp}\right)^{\perp}=\operatorname{Span}(S)$. In particular, for any subspace V we have $\left(V^{\perp}\right)^{\perp}=V$.
Example. Consider a line $L=\{(x, 0,0) \mid x \in \mathbb{R}\}$ and a plane $\Pi=\{(0, y, z) \mid y, z \in \mathbb{R}\}$ in \mathbb{R}^{3}.
Then $L^{\perp}=\Pi$ and $\Pi^{\perp}=L$.

Fundamental subspaces

Definition. Given an $m \times n$ matrix A, let

$$
\begin{aligned}
& N(A)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid A \mathbf{x}=\mathbf{0}\right\} \\
& R(A)=\left\{\mathbf{b} \in \mathbb{R}^{m} \mid \mathbf{b}=A \mathbf{x} \text { for some } \mathbf{x} \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

$R(A)$ is the range of a linear mapping $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, $L(\mathbf{x})=A \mathbf{x} . \quad N(A)$ is the kernel of L.
Also, $N(A)$ is the nullspace of the matrix A while $R(A)$ is the column space of A. The row space of A is $R\left(A^{T}\right)$.
The subspaces $N(A), R\left(A^{T}\right) \subset \mathbb{R}^{n}$ and $R(A), N\left(A^{T}\right) \subset \mathbb{R}^{m}$ are fundamental subspaces associated to the matrix A.

Theorem $N(A)=R\left(A^{T}\right)^{\perp}, \quad N\left(A^{T}\right)=R(A)^{\perp}$. That is, the nullspace of a matrix is the orthogonal complement of its row space.
Proof: The equality $A \mathbf{x}=\mathbf{0}$ means that the vector \mathbf{x} is orthogonal to rows of the matrix A. Therefore $N(A)=S^{\perp}$, where S is the set of rows of A. It remains to note that $S^{\perp}=\operatorname{Span}(S)^{\perp}=R\left(A^{T}\right)^{\perp}$.

Corollary Let V be a subspace of \mathbb{R}^{n}. Then $\operatorname{dim} V+\operatorname{dim} V^{\perp}=n$.
Proof: Pick a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ for V. Let A be the $k \times n$ matrix whose rows are vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Then $V=R\left(A^{T}\right)$, hence $V^{\perp}=N(A)$. Consequently, $\operatorname{dim} V$ and $\operatorname{dim} V^{\perp}$ are rank and nullity of A. Therefore $\operatorname{dim} V+\operatorname{dim} V^{\perp}$ equals the number of columns of A, which is n.

Problem. Let V be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$. Find V^{\perp}.

The orthogonal complement to V is the same as the orthogonal complement of the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$. A vector $\mathbf{u}=(x, y, z)$ belongs to the latter if and only if

$$
\left\{\begin{array} { l }
{ \mathbf { u } \cdot \mathbf { v } _ { 1 } = 0 } \\
{ \mathbf { u } \cdot \mathbf { v } _ { 2 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x+y=0 \\
y+z=0
\end{array}\right.\right.
$$

Alternatively, the subspace V is the row space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right),
$$

hence V^{\perp} is the nullspace of A.
The general solution of the system (or, equivalently, the general element of the nullspace of A) is $(t,-t, t)$ $=t(1,-1,1), t \in \mathbb{R}$. Thus V^{\perp} is the straight line spanned by the vector $(1,-1,1)$.

Orthogonal projection

Theorem 1 Let V be a subspace of \mathbb{R}^{n}. Then any vector $\mathbf{x} \in \mathbb{R}^{n}$ is uniquely represented as $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in V$ and $\mathbf{o} \in V^{\perp}$. Idea of the proof: Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be a basis for V and $\mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ be a basis for V^{\perp}. Then $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{w}_{1}, \ldots, \mathbf{w}_{m}$ is a linearly independent set. Hence it is a basis for \mathbb{R}^{n}.
In the above expansion, \mathbf{p} is called the orthogonal projection of the vector \mathbf{x} onto the subspace V.

Theorem $2\|\mathbf{x}-\mathbf{v}\|>\|\mathbf{x}-\mathbf{p}\|$ for any $\mathbf{v} \neq \mathbf{p}$ in V.
Thus $\|\mathbf{o}\|=\|\mathbf{x}-\mathbf{p}\|=\min _{\mathbf{v} \in V}\|\mathbf{x}-\mathbf{v}\|$ is the
distance from the vector \mathbf{x} to the subspace V.

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

$\mathbf{p}=$ orthogonal projection of \mathbf{x} onto \mathbf{y}

Orthogonal projection onto a vector

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, with $\mathbf{y} \neq \mathbf{0}$.
Then there exists a unique decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$ such that \mathbf{p} is parallel to \mathbf{y} and \mathbf{o} is orthogonal to \mathbf{y}.

We have $\mathbf{p}=\alpha \mathbf{y}$ for some $\alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
& 0=\mathbf{o} \cdot \mathbf{y}=(\mathbf{x}-\alpha \mathbf{y}) \cdot \mathbf{y}=\mathbf{x} \cdot \mathbf{y}-\alpha \mathbf{y} \cdot \mathbf{y} . \\
\Longrightarrow & \alpha=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \Longrightarrow
\end{aligned}
$$

Problem. Find the distance from the point $\mathbf{x}=(3,1)$ to the line spanned by $\mathbf{y}=(2,-1)$.

Consider the decomposition $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where \mathbf{p} is parallel to \mathbf{y} while $\mathbf{o} \perp \mathbf{y}$. The required distance is the length of the orthogonal component \mathbf{o}.
$\mathbf{p}=\frac{\mathbf{x} \cdot \mathbf{y}}{\mathbf{y} \cdot \mathbf{y}} \mathbf{y}=\frac{5}{5}(2,-1)=(2,-1)$,
$\mathbf{o}=\mathbf{x}-\mathbf{p}=(3,1)-(2,-1)=(1,2), \quad\|\mathbf{o}\|=\sqrt{5}$.
Problem. Find the point on the line $y=-x$ that is closest to the point $(3,4)$.
The required point is the projection \mathbf{p} of $\mathbf{v}=(3,4)$ on the vector $\mathbf{w}=(1,-1)$ spanning the line $y=-x$.

$$
\mathbf{p}=\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}} \mathbf{w}=\frac{-1}{2}(1,-1)=\left(-\frac{1}{2}, \frac{1}{2}\right) .
$$

Problem. Let Π be the plane spanned by vectors $\mathbf{v}_{1}=(1,1,0)$ and $\mathbf{v}_{2}=(0,1,1)$.
(i) Find the orthogonal projection of the vector $\mathbf{x}=(4,0,-1)$ onto the plane Π.
(ii) Find the distance from x to Π.

We have $\mathbf{x}=\mathbf{p}+\mathbf{o}$, where $\mathbf{p} \in \Pi$ and $\mathbf{o} \perp \Pi$.
Then the orthogonal projection of \mathbf{x} onto Π is \mathbf{p} and the distance from \mathbf{x} to Π is $\|\mathbf{o}\|$.
We have $\mathbf{p}=\alpha \mathbf{v}_{1}+\beta \mathbf{v}_{2}$ for some $\alpha, \beta \in \mathbb{R}$.
Then $\mathbf{o}=\mathbf{x}-\mathbf{p}=\mathbf{x}-\alpha \mathbf{v}_{1}-\beta \mathbf{v}_{2}$.
$\left\{\begin{array}{l}\mathbf{o} \cdot \mathbf{v}_{1}=0 \\ \mathbf{o} \cdot \mathbf{v}_{2}=0\end{array} \Longleftrightarrow\left\{\begin{array}{l}\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\ \alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}\end{array}\right.\right.$

$$
\mathbf{x}=(4,0,-1), \quad \mathbf{v}_{1}=(1,1,0), \quad \mathbf{v}_{2}=(0,1,1)
$$

$$
\left\{\begin{array}{l}
\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{1}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{1}\right)=\mathbf{x} \cdot \mathbf{v}_{1} \\
\alpha\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2}\right)+\beta\left(\mathbf{v}_{2} \cdot \mathbf{v}_{2}\right)=\mathbf{x} \cdot \mathbf{v}_{2}
\end{array}\right.
$$

$$
\Longleftrightarrow\left\{\begin{array} { l }
{ 2 \alpha + \beta = 4 } \\
{ \alpha + 2 \beta = - 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\alpha=3 \\
\beta=-2
\end{array}\right.\right.
$$

$$
\mathbf{p}=3 \mathbf{v}_{1}-2 \mathbf{v}_{2}=(3,1,-2)
$$

$$
\mathbf{o}=\mathbf{x}-\mathbf{p}=(1,-1,1)
$$

$$
\|\mathbf{o}\|=\sqrt{3}
$$

Overdetermined system of linear equations:
$\left\{\begin{array}{l}x+2 y=3 \\ 3 x+2 y=5 \\ x+y=2.09\end{array}\right.$
$\Longleftrightarrow\left\{\begin{array}{l}x+2 y=3 \\ -4 y=-4 \\ -y=-0.91\end{array}\right.$
No solution: inconsistent system
Assume that a solution $\left(x_{0}, y_{0}\right)$ does exist but the system is not quite accurate, namely, there may be some errors in the right-hand sides.
Problem. Find a good approximation of $\left(x_{0}, y_{0}\right)$.
One approach is the least squares fit. Namely, we look for a pair (x, y) that minimizes the sum $(x+2 y-3)^{2}+(3 x+2 y-5)^{2}+(x+y-2.09)^{2}$.

Least squares solution

System of linear equations:

$$
\left\{\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \\
\cdots \cdots+a_{m n} x_{n}=b_{m}
\end{array}\right.
$$

$$
\Longleftrightarrow A \mathbf{x}=\mathbf{b}
$$

For any $\mathbf{x} \in \mathbb{R}^{n}$ define a residual $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$.
The least squares solution x to the system is the one that minimizes $\|r(\mathbf{x})\|$ (or, equivalently, $\|r(\mathbf{x})\|^{2}$).

$$
\|r(\mathbf{x})\|^{2}=\sum_{i=1}^{m}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}\right)^{2}
$$

Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^{m}$.
Theorem A vector $\hat{\mathbf{x}}$ is a least squares solution of the system $A \mathbf{x}=\mathbf{b}$ if and only if it is a solution of the associated normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
Proof: $A \mathbf{x}$ is an arbitrary vector in $R(A)$, the column space of A. Hence the length of $r(\mathbf{x})=\mathbf{b}-A \mathbf{x}$ is minimal if $A \mathbf{x}$ is the orthogonal projection of \mathbf{b} onto $R(A)$. That is, if $r(\mathbf{x})$ is orthogonal to $R(A)$.
We know that $\{\text { row space }\}^{\perp}=\{$ nullspace $\}$ for any matrix. In particular, $R(A)^{\perp}=N\left(A^{T}\right)$, the nullspace of the transpose matrix of A. Thus $\hat{\mathbf{x}}$ is a least squares solution if and only if

$$
A^{T} r(\hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0} \Longleftrightarrow A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}
$$

Corollary The normal system $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$ is always consistent.

Problem. Find the least squares solution to

$$
\left\{\begin{array}{l}
x+2 y=3 \\
3 x+2 y=5 \\
x+y=2.09
\end{array}\right.
$$

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 2 \\
1 & 1
\end{array}\right)\binom{x}{y}=\left(\begin{array}{c}
3 \\
5 \\
2.09
\end{array}\right)
$$

$\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 2 \\ 1 & 1\end{array}\right)\binom{x}{y}=\left(\begin{array}{lll}1 & 3 & 1 \\ 2 & 2 & 1\end{array}\right)\left(\begin{array}{c}3 \\ 5 \\ 2.09\end{array}\right)$
$\left(\begin{array}{cc}11 & 9 \\ 9 & 9\end{array}\right)\binom{x}{y}=\binom{20.09}{18.09} \Longleftrightarrow\left\{\begin{array}{l}x=1 \\ y=1.01\end{array}\right.$

Problem. Find the constant function that is the least squares fit to the following data

x	0	1	2	3
$f(x)$	1	0	1	2

$$
f(x)=c \Longrightarrow\left\{\begin{array}{l}
c=1 \\
c=0 \\
c=1 \\
c=2
\end{array} \Longrightarrow\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)(c)=\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right)\right.
$$

$(1,1,1,1)\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)(c)=(1,1,1,1)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)$
$c=\frac{1}{4}(1+0+1+2)=1 \quad$ (mean arithmetic value)

Problem. Find the linear polynomial that is the least squares fit to the following data

$$
\begin{aligned}
& \begin{array}{c||c|c|c|c}
x & 0 & 1 & 2 & 3 \\
\hline f(x) & 1 & 0 & 1 & 2
\end{array} \\
& f(x)=c_{1}+c_{2} x \Longrightarrow\left\{\begin{array}{l}
c_{1}=1 \\
c_{1}+c_{2}=0 \\
c_{1}+2 c_{2}=1 \\
c_{1}+3 c_{2}=2
\end{array} \Longrightarrow\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right)\right. \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2 \\
1 & 3
\end{array}\right)\binom{c_{1}}{c_{2}}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1 \\
2
\end{array}\right) \\
& \left(\begin{array}{cc}
4 & 6 \\
6 & 14
\end{array}\right)\binom{c_{1}}{c_{2}}=\binom{4}{8} \Longleftrightarrow\left\{\begin{array}{l}
c_{1}=0.4 \\
c_{2}=0.4
\end{array}\right.
\end{aligned}
$$

Problem. Find the quadratic polynomial that is the least squares fit to the following data

x	0	1	2	3
$f(x)$	1	0	1	2

$f(x)=c_{1}+c_{2} x+c_{3} x^{2}$
$\Longrightarrow\left\{\begin{array}{l}c_{1}=1 \\ c_{1}+c_{2}+c_{3}=0 \\ c_{1}+2 c_{2}+4 c_{3}=1 \\ c_{1}+3 c_{2}+9 c_{3}=2\end{array} \Longrightarrow\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)\right.$
$\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9\end{array}\right)\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 4 & 9\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 2\end{array}\right)$
$\left(\begin{array}{ccc}4 & 6 & 14 \\ 6 & 14 & 36 \\ 14 & 36 & 98\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\left(\begin{array}{c}4 \\ 8 \\ 22\end{array}\right) \Longleftrightarrow\left\{\begin{array}{l}c_{1}=0.9 \\ c_{2}=-1.1 \\ c_{3}=0.5\end{array}\right.$

