MATH 323 Linear Algebra

Lecture 24b: Orthogonal polynomials. **Problem.** Approximate the function $f(x) = e^x$ on the interval [-1, 1] by a quadratic polynomial.

The best approximation would be a polynomial p(x) that minimizes the distance relative to the uniform norm:

$$\|f - p\|_{\infty} = \max_{|x| \le 1} |f(x) - p(x)|.$$

However there is no analytic way to find such a polynomial. Instead, one can find a **"least** squares" approximation that minimizes the integral norm

$$||f - p||_2 = \left(\int_{-1}^1 |f(x) - p(x)|^2 dx\right)^{1/2}$$

The norm $\|\cdot\|_2$ is induced by the inner product

$$\langle g,h\rangle = \int_{-1}^{1} g(x)h(x)\,dx.$$

Therefore $||f - p||_2$ is minimal if p is the orthogonal projection of the function f on the subspace \mathcal{P}_3 of quadratic polynomials.

We should apply the Gram-Schmidt process to the polynomials $1, x, x^2$, which form a basis for \mathcal{P}_3 . This would yield an orthogonal basis p_0, p_1, p_2 . Then

$$p(x) = rac{\langle f, p_0
angle}{\langle p_0, p_0
angle} p_0(x) + rac{\langle f, p_1
angle}{\langle p_1, p_1
angle} p_1(x) + rac{\langle f, p_2
angle}{\langle p_2, p_2
angle} p_2(x).$$

Orthogonal polynomials

 \mathcal{P} : the vector space of all polynomials with real coefficients: $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$. Basis for \mathcal{P} : $1, x, x^2, \dots, x^n, \dots$

Suppose that \mathcal{P} is endowed with an inner product.

Definition. Orthogonal polynomials (relative to the inner product) are polynomials $p_0, p_1, p_2, ...$ such that deg $p_n = n$ (p_0 is a nonzero constant) and $\langle p_n, p_m \rangle = 0$ for $n \neq m$.

Remark. The orthogonal polynomials are linearly independent. It follows that p_0, p_1, p_2, \ldots is a basis for \mathcal{P} .

Orthogonal polynomials can be obtained by applying the Gram-Schmidt orthogonalization process to the basis $1.x.x^2...$ $p_0(x) = 1$, $p_1(x) = x - \frac{\langle x, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x),$ $p_2(x) = x^2 - \frac{\langle x^2, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) - \frac{\langle x^2, p_1 \rangle}{\langle p_1, p_1 \rangle} p_1(x),$ $p_n(x) = x^n - \frac{\langle x^{\prime\prime}, p_0 \rangle}{\langle p_0, p_0 \rangle} p_0(x) - \cdots - \frac{\langle x^n, p_{n-1} \rangle}{\langle p_{n-1}, p_{n-1} \rangle} p_{n-1}(x),$

Then p_0, p_1, p_2, \ldots are orthogonal polynomials.

Theorem (a) Orthogonal polynomials always exist.

(b) The orthogonal polynomial of a fixed degree is unique up to scaling.

(c) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, q \rangle = 0$ for any polynomial q with deg $q < \deg p$. (d) A polynomial $p \neq 0$ is an orthogonal polynomial if and only if $\langle p, x^k \rangle = 0$ for any $0 \leq k < \deg p$.

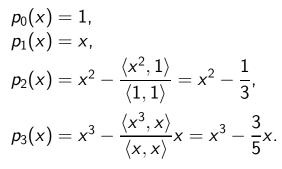
Proof of statement (b): Suppose that P and R are two orthogonal polynomials of the same degree n. Then $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and $R(x) = b_n x^n + b_{n-1} x^{n-1} + \cdots + b_1 x + b_0$, where $a_n, b_n \neq 0$. Consider a polynomial $Q(x) = b_n P(x) - a_n R(x)$. By construction, deg Q < n. It follows from statement (c) that $\langle P, Q \rangle = \langle R, Q \rangle = 0$. Then

 $\langle Q, Q \rangle = \langle b_n P - a_n R, Q \rangle = b_n \langle P, Q \rangle - a_n \langle R, Q \rangle = 0,$ which means that Q = 0. Thus $R(x) = (a_n^{-1}b_n) P(x)$.

Example.
$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x) dx.$$

Note that $\langle x^m, x^n \rangle = \int_{-1} x^{m+n} dx = 0$ if m+n is

odd. Hence $p_{2k}(x)$ contains only even powers of x while $p_{2k+1}(x)$ contains only odd powers of x.



 p_0, p_1, p_2, \ldots are called the **Legendre polynomials**.

Instead of normalization, the orthogonal polynomials are subject to **standardization**.

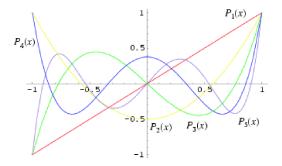
The standardization for the Legendre polynomials is $P_n(1) = 1$. In particular, $P_0(x) = 1$, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$.

Problem. Find $P_4(x)$.

Let $P_4(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$. We know that $P_4(1) = 1$ and $\langle P_4, x^k \rangle = 0$ for $0 \le k \le 3$.

 $\begin{array}{l} P_4(1) = a_4 + a_3 + a_2 + a_1 + a_0, \\ \langle P_4, 1 \rangle = \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0, \ \langle P_4, x \rangle = \frac{2}{5}a_3 + \frac{2}{3}a_1, \\ \langle P_4, x^2 \rangle = \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0, \ \langle P_4, x^3 \rangle = \frac{2}{7}a_3 + \frac{2}{5}a_1. \end{array}$

$$\begin{cases} a_4 + a_3 + a_2 + a_1 + a_0 = 1\\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0\\ \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0\\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0\\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0$$
$$\begin{cases} \frac{2}{5}a_3 + \frac{2}{3}a_1 = 0\\ \frac{2}{7}a_3 + \frac{2}{5}a_1 = 0 \end{cases} \implies a_1 = a_3 = 0\\ \begin{cases} a_4 + a_2 + a_0 = 1\\ \frac{2}{5}a_4 + \frac{2}{3}a_2 + 2a_0 = 0\\ \frac{2}{7}a_4 + \frac{2}{5}a_2 + \frac{2}{3}a_0 = 0 \end{cases} \iff \begin{cases} a_4 = \frac{35}{8}\\ a_2 = -\frac{30}{8}\\ a_0 = \frac{3}{8} \end{cases}$$
Thus $P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3).$



Legendre polynomials

How to evaluate orthogonal polynomials

Suppose p_0, p_1, p_2, \ldots are orthogonal polynomials with respect to an inner product of the form

$$\langle p,q\rangle = \int_a^b p(x)q(x)w(x)\,dx.$$

Theorem The polynomials satisfy recurrences $p_n(x) = (\alpha_n x + \beta_n) p_{n-1}(x) + \gamma_n p_{n-2}(x)$ for all $n \ge 2$, where $\alpha_n, \beta_n, \gamma_n$ are some constants.

Recurrent formulas for the Legendre polynomials: $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$ For example, $4P_4(x) = 7xP_3(x) - 3P_2(x).$ Definition. Chebyshev polynomials $T_0, T_1, T_2, ...$ are orthogonal polynomials relative to the inner product

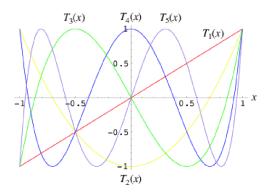
$$\langle p,q
angle = \int_{-1}^1 rac{p(x)q(x)}{\sqrt{1-x^2}}\,dx,$$

with the standardization $T_n(1) = 1$.

Remark. "T" is like in "Tschebyscheff".

Recurrent formula: $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$. $T_0(x) = 1$, $T_1(x) = x$, $T_2(x) = 2x^2 - 1$, $T_3(x) = 4x^3 - 3x$, $T_4(x) = 8x^4 - 8x^2 + 1$, ...

Theorem. $T_n(\cos \phi) = \cos n\phi$.



Chebyshev polynomials