Homework assignment \#1

Problem 1. Interpret each equation of the following system as a line in the plane. Graph the lines and determine geometrically the number of solutions.

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=4 \\
x_{1}-x_{2}=2
\end{array}\right.
$$

Problem 2. Interpret each equation of the following system as a line in the plane. Graph the lines and determine geometrically the number of solutions.

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=1 \\
x_{1}-x_{2}=1 \\
-x_{1}+3 x_{2}=3
\end{array}\right.
$$

Problem 3. Solve a system of linear equations

$$
\left\{\begin{array}{l}
x_{1}+2 x_{2}-x_{3}=1 \\
2 x_{1}-x_{2}+x_{3}=3 \\
-x_{1}+2 x_{2}+3 x_{3}=7
\end{array}\right.
$$

Problem 4. Solve a system of linear equations

$$
\left\{\begin{array}{l}
3 x_{1}+2 x_{2}+x_{3}=0 \\
-2 x_{1}+x_{2}-x_{3}=2 \\
2 x_{1}-x_{2}+2 x_{3}=-1
\end{array}\right.
$$

Problem 5. The following matrix is the augmented matrix of a system of linear equations in variables $x_{1}, x_{2}, x_{3}, x_{4}$. Find the solution set to the system.

$$
\left(\begin{array}{llll|l}
1 & 2 & 0 & 1 & 5 \\
0 & 0 & 1 & 3 & 4
\end{array}\right)
$$

Problem 6. Use Gauss-Jordan reduction to solve the following system:

$$
\left\{\begin{array}{l}
x_{1}+3 x_{2}+x_{3}+x_{4}=3 \\
2 x_{1}-2 x_{2}+x_{3}+2 x_{4}=8 \\
3 x_{1}+x_{2}+2 x_{3}-x_{4}=-1
\end{array}\right.
$$

Problem 7. Use Gauss-Jordan reduction to solve the following system:

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}=0 \\
x_{1}-x_{2}-x_{3}=0
\end{array}\right.
$$

Problem 8. The following matrix is the augmented matrix of a system of linear equations. For what values of the parameter a will the system have a unique solution?

$$
\left(\begin{array}{rrr|r}
1 & 2 & 1 & 1 \\
-1 & 4 & 3 & 2 \\
2 & -2 & a & 3
\end{array}\right)
$$

Problem 9. Determine the values of $x_{1}, x_{2}, x_{3}, x_{4}$ for the following traffic flow diagram:

Problem 10. Determine the amount of each current for the following network:

