Homework assignment \#4

Problem 1. Let $\mathbf{0}$ be the zero vector of a vector space V. Prove that $\beta \mathbf{0}=\mathbf{0}$ for each scalar β.

Problem 2. Consider the set $V=\mathbb{R}^{2}$ with addition \oplus and scalar multiplication \odot defined by

$$
\begin{aligned}
\left(x_{1}, x_{2}\right) \oplus\left(y_{1}, y_{2}\right) & =\left(x_{1}+x_{2}, y_{1}+y_{2}\right), \\
\alpha \odot\left(x_{1}, x_{2}\right) & =\left(\alpha x_{1}, x_{2}\right) .
\end{aligned}
$$

Is V a vector space with these operations? Justify your answer.

Problem 3. Determine whether the following sets form subspaces of the vector space \mathbb{R}^{2}.
(i) The set S_{1} of all vectors $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ such that $x_{1} x_{2}=0$.
(ii) The set S_{2} of all vectors $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ such that $x_{1}=3 x_{2}$.

Problem 4. Determine whether the following vectors form a spanning set for the vector space \mathbb{R}^{2} :
(i) $\binom{2}{3}$ and $\binom{4}{6} ; \quad$ (ii) $\binom{-2}{1},\binom{1}{3}$ and $\binom{2}{4}$.

Problem 5. Let $\mathbf{v}=(-1,2,3)$ and $\mathbf{w}=(3,4,2)$. Determine whether the following vectors belong to $\operatorname{Span}(\mathbf{v}, \mathbf{w})$, the span of \mathbf{v} and \mathbf{w} :
(i) $(2,6,6), \quad$ (ii) $(-9,-2,5)$.

Problem 6. Determine whether $\left\{x+2, x+1, x^{2}-1\right\}$ is a spanning set for \mathcal{P}_{3}, the vector space of polynomials of degree at most 2 .

Problem 7. Suppose that U_{1} and U_{2} are subspaces of the same vector space V. Prove that their intersection $U_{1} \cap U_{2}$ is also a subspace of V.

