Homework assignment #5

Problem 1. Determine whether the following vectors are linearly independent in \mathbb{R}^3 : (i) (2, 1, -2), (3, 2, -2) and (2, 2, 0); (ii) (2, 1, -2), (-2, -1, 2) and (4, 2, -4); (iii) (1, 1, 3) and (0, 2, 1).

Problem 2. Determine whether the following matrices are linearly independent in the vector space $\mathcal{M}_{2,2}(\mathbb{R})$ of 2×2 matrices:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$.

Problem 3. Determine whether the following polynomials are linearly independent in the vector space \mathcal{P} of polynomials:

(i) 2, x^2 , x and 2x + 3; (ii) x + 2, x + 1 and $x^2 - 1$.

Problem 4. Show that the following functions are linearly independent in the vector space C[0, 1]:

(i) e^x , e^{-x} and e^{2x} ; (ii) 1, $e^x + e^{-x}$ and $e^x - e^{-x}$.

Problem 5. The functions f(x) = 2x and g(x) = |x| can be considered elements of the vector space C[a, b] for any interval $[a, b] \subset \mathbb{R}$. Show that f(x) and g(x) are linearly independent in C[-1, 1] while being linearly dependent in C[0, 1].

Problem 6. Suppose that \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are linearly independent vectors in a vector space V. Prove that the vectors $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3$ and $\mathbf{w}_3 = \mathbf{v}_3 + \mathbf{v}_1$ are also linearly independent in V.