Homework assignment \#8

Problem 1. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear operator. Suppose that $L(1,2)=(-2,3)$ and $L(1,-1)=(5,2)$. Find the value of $L(7,5)$.

Problem 2. Consider a $\operatorname{map} f: \mathcal{M}_{n, n}(\mathbb{R}) \rightarrow \mathcal{M}_{n, n}(\mathbb{R})$ given by $f(A)=A+I$ for all $n \times n$ matrices A (where I is the $n \times n$ identity matrix). Determine whether f is a linear operator.

Problem 3. Determine the kernel and range of the linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by $L(x, y, z)=(x, x, x)$ for all $(x, y, z) \in \mathbb{R}^{3}$.

Problem 4. Determine the kernel and range of the linear operator $L: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ given by $L(p(x))=x p^{\prime}(x)$ for all polynomials $p(x)$ of degree less than 3 .

Problem 5. Consider a linear transformation $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
L(x, y, z)=(y-x, z-y)
$$

for all $(x, y, z) \in \mathbb{R}^{3}$. Find a matrix A such that $L(\mathbf{v})=A \mathbf{v}$ for every $\mathbf{v} \in \mathbb{R}^{3}$, where \mathbf{v} and $L(\mathbf{v})$ are regarded as column vectors.

Problem 6. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
L(x, y, z)=(2 z, y+3 x, 2 x-z)
$$

for all $(x, y, z) \in \mathbb{R}^{3}$. Find a matrix A such that $L(\mathbf{v})=A \mathbf{v}$ for every $\mathbf{v} \in \mathbb{R}^{3}$, where \mathbf{v} and $L(\mathbf{v})$ are regarded as column vectors.

Problem 7. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
L(x, y, z)=(2 x-y-z, 2 y-x-z, 2 z-x-y)
$$

for all $(x, y, z) \in \mathbb{R}^{3}$. Find the matrix A of L with respect to the standard basis, and use A to find the value of $L(1,1,1)$.

Problem 8. Let V be the subspace of $C^{\infty}[0,1]$ spanned by the functions $f_{1}(x)=e^{x}$, $f_{2}(x)=x e^{x}$ and $f_{3}(x)=x^{2} e^{x}$. Let D be the differentiation operator restricted to V. Find the matrix of D with respect to the ordered basis f_{1}, f_{2}, f_{3}.

Problem 9. Consider a linear operator $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ given by

$$
L\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
3 & -1 & -2 \\
2 & 0 & -2 \\
2 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

for all $(x, y, z) \in \mathbb{R}^{3}$. Let $\mathbf{v}_{1}=(1,1,1), \mathbf{v}_{2}=(1,2,0)$ and $\mathbf{v}_{3}=(0,-2,1)$. Find the transition matrix from the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ to the standard basis, and use it to determine the matrix of L with respect to $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Problem 10. Show that if A and B are similar matrices, then $\operatorname{det}(A)=\operatorname{det}(B)$.

