MATH 323 Linear Algebra

Lecture 9: Vector spaces (continued). Subspaces of vector spaces.

Abstract vector space

A vector space is a set V equipped with two operations, addition $V \times V \ni (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} + \mathbf{y} \in V$ and scalar multiplication $\mathbb{R} \times V \ni (r, \mathbf{x}) \mapsto r\mathbf{x} \in V$, that have the following properties:

A1.
$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$$
 for all $\mathbf{x}, \mathbf{y} \in V$;
A2. $(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$;

A3. there exists an element of V, called the *zero vector* and denoted **0**, such that $\mathbf{x} + \mathbf{0} = \mathbf{0} + \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$;

A4. for any $\mathbf{x} \in V$ there exists an element of V, denoted $-\mathbf{x}$, such that $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0}$;

A5.
$$r(\mathbf{x} + \mathbf{y}) = r\mathbf{x} + r\mathbf{y}$$
 for all $r \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in V$;
A6. $(r + s)\mathbf{x} = r\mathbf{x} + s\mathbf{x}$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
A7. $(rs)\mathbf{x} = r(s\mathbf{x})$ for all $r, s \in \mathbb{R}$ and $\mathbf{x} \in V$;
A8. $1\mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

Additional properties of vector spaces

- The zero vector is unique.
- For any $\mathbf{x} \in V$, the negative $-\mathbf{x}$ is unique.

•
$$\mathbf{x} + \mathbf{y} = \mathbf{z} \iff \mathbf{x} = \mathbf{z} - \mathbf{y}$$
 for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.

- $\mathbf{x} + \mathbf{z} = \mathbf{y} + \mathbf{z} \iff \mathbf{x} = \mathbf{y}$ for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.
- $0\mathbf{x} = \mathbf{0}$ for any $\mathbf{x} \in V$.
- $(-1)\mathbf{x} = -\mathbf{x}$ for any $\mathbf{x} \in V$.

Examples of vector spaces

- \mathbb{R}^n : *n*-dimensional coordinate vectors
- $\mathcal{M}_{m,n}(\mathbb{R})$: $m \times n$ matrices with real entries
- \mathbb{R}^{∞} : infinite sequences (x_1, x_2, \dots) , $x_i \in \mathbb{R}$
- $\{0\}$: the trivial vector space
- $F(\mathbb{R})$: the set of all functions $f:\mathbb{R}\to\mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f:\mathbb{R}\to\mathbb{R}$
- $C^1(\mathbb{R})$: all continuously differentiable functions $f: \mathbb{R} \to \mathbb{R}$
- $C^{\infty}(\mathbb{R})$: all smooth functions $f:\mathbb{R}\to\mathbb{R}$
- \mathcal{P} : all polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$

Counterexample: dumb scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$r \odot \mathbf{x} = \mathbf{0}$$
 for any $\mathbf{x} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5.
$$r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y}$$
 $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$ A6. $(r + s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x}$ $\iff \mathbf{0} = \mathbf{0} + \mathbf{0}$ A7. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x})$ $\iff \mathbf{0} = \mathbf{0}$ A8. $1 \odot \mathbf{x} = \mathbf{x}$ $\iff \mathbf{0} = \mathbf{x}$

A8 is the only property that fails. As a consequence, property A8 does not follow from properties A1–A7.

Counterexample: lazy scaling

Consider the set $V = \mathbb{R}^n$ with the standard addition and a nonstandard scalar multiplication:

$$r \odot \mathbf{x} = \mathbf{x}$$
 for any $\mathbf{x} \in \mathbb{R}^n$ and $r \in \mathbb{R}$.

Properties A1–A4 hold because they do not involve scalar multiplication.

A5. $r \odot (\mathbf{x} + \mathbf{y}) = r \odot \mathbf{x} + r \odot \mathbf{y} \iff \mathbf{x} + \mathbf{y} = \mathbf{x} + \mathbf{y}$ A6. $(r + s) \odot \mathbf{x} = r \odot \mathbf{x} + s \odot \mathbf{x} \iff \mathbf{x} = \mathbf{x} + \mathbf{x}$ A7. $(rs) \odot \mathbf{x} = r \odot (s \odot \mathbf{x}) \iff \mathbf{x} = \mathbf{x}$ A8. $1 \odot \mathbf{x} = \mathbf{x} \iff \mathbf{x} = \mathbf{x}$

The only property that fails is A6.

Weird example

Consider the set $V = \mathbb{R}_+$ of positive numbers with a nonstandard addition and scalar multiplication:

$$\begin{array}{c} x \oplus y = xy \\ \hline r \odot x = x^{r} \end{array} \mbox{ for any } x, y \in \mathbb{R}_{+}, \\ \hline r \odot x = x^{r} \mbox{ for any } x \in \mathbb{R}_{+} \mbox{ and } r \in \mathbb{R}. \end{array}$$

A1. $x \oplus y = y \oplus x \iff xy = yx$ A2. $(x \oplus y) \oplus z = x \oplus (y \oplus z) \iff (xy)z = x(yz)$ A3. $x \oplus \zeta = \zeta \oplus x = x \iff x\zeta = \zeta x = x$ (holds for $\zeta = 1$) A4. $x \oplus \eta = \eta \oplus x = 1 \iff x\eta = \eta x = 1$ (holds for $\eta = x^{-1}$) A5. $r \odot (x \oplus y) = (r \odot x) \oplus (r \odot y) \iff (xy)^r = x^r y^r$ A6. $(r+s) \odot x = (r \odot x) \oplus (s \odot x) \iff x^{r+s} = x^r x^s$ A7. $(rs) \odot x = r \odot (s \odot x) \iff x^{rs} = (x^s)^r$ A8. $1 \odot x = x \iff x^1 = x$

Subspaces of vector spaces

Definition. A vector space V_0 is a **subspace** of a vector space V if $V_0 \subset V$ and the linear operations on V_0 agree with the linear operations on V.

Examples.

- $F(\mathbb{R})$: all functions $f : \mathbb{R} \to \mathbb{R}$
- $C(\mathbb{R})$: all continuous functions $f : \mathbb{R} \to \mathbb{R}$ $C(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_k x^k$
- \mathcal{P}_n : polynomials of degree less than n \mathcal{P}_n is a subspace of \mathcal{P} .

Subspaces of vector spaces

Counterexamples.

- \mathcal{P} : polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$
- P_n^* : polynomials of degree $n \ (n > 0)$
- P_n^* is not a subspace of \mathcal{P} .

 $-x^n + (x^n + 1) = 1 \notin P_n^* \implies P_n^*$ is not a vector space (addition is not well defined).

 $\bullet~\mathbb{R}$ with the standard linear operations

• \mathbb{R}_+ with the operations \oplus and \odot \mathbb{R}_+ is not a subspace of \mathbb{R} since the linear operations do not agree. If S is a subset of a vector space V then S inherits from V addition and scalar multiplication. However S need not be closed under these operations.

Proposition A subset S of a vector space V is a subspace of V if and only if S is **nonempty** and **closed under linear operations**, i.e.,

$$\begin{array}{rcl} \mathbf{x},\mathbf{y}\in S \implies \mathbf{x}+\mathbf{y}\in S,\\ \mathbf{x}\in S \implies r\mathbf{x}\in S \ \ \text{for all} \ \ r\in \mathbb{R}. \end{array}$$

Proof: "only if" is obvious.

"if": properties like associative, commutative, or distributive law hold for S because they hold for V. We only need to verify properties A3 and A4. Take any $\mathbf{x} \in S$ (note that S is nonempty). Then $\mathbf{0} = 0\mathbf{x} \in S$. Also, $-\mathbf{x} = (-1)\mathbf{x} \in S$. Thus $\mathbf{0}$ and $-\mathbf{x}$ in S are the same as in V. *Example.* $V = \mathbb{R}^2$.

• The line x - y = 0 is a subspace of \mathbb{R}^2 .

The line consists of all vectors of the form (t, t), $t \in \mathbb{R}$. $(t, t) + (s, s) = (t + s, t + s) \implies$ closed under addition $r(t, t) = (rt, rt) \implies$ closed under scaling

The parabola y = x² is not a subspace of ℝ².
It is enough to find one explicit counterexample.
Counterexample 1: (1,1) + (-1,1) = (0,2).
(1,1) and (-1,1) lie on the parabola while (0,2) does not ⇒ not closed under addition
Counterexample 2: 2(1,1) = (2,2).

(1,1) lies on the parabola while (2,2) does not \implies not closed under scaling *Example.* $V = \mathbb{R}^3$.

- The plane z = 0 is a subspace of \mathbb{R}^3 .
- The plane z = 1 is not a subspace of \mathbb{R}^3 .

• The line t(1,1,0), $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 and a subspace of the plane z = 0.

• The line (1,1,1) + t(1,-1,0), $t \in \mathbb{R}$ is not a subspace of \mathbb{R}^3 as it lies in the plane x + y + z = 3, which does not contain **0**.

• In general, a straight line or a plane in \mathbb{R}^3 is a subspace if and only if it passes through the origin.

System of linear equations:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \dots \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

Any solution (x_1, x_2, \ldots, x_n) is an element of \mathbb{R}^n .

Theorem The solution set of the system is a subspace of \mathbb{R}^n if and only if all $b_i = 0$.

Theorem The solution set of a system of linear equations in *n* variables is a subspace of \mathbb{R}^n if and only if all equations are homogeneous.

Proof: "only if": the zero vector $\mathbf{0} = (0, 0, \dots, 0)$, which belongs to every subspace, is a solution only if all equations are homogeneous.

"if": a system of homogeneous linear equations is equivalent to a matrix equation $A\mathbf{x} = \mathbf{0}$, where A is the coefficient matrix of the system and all vectors are regarded as column vectors. $A\mathbf{0} = \mathbf{0} \implies \mathbf{0}$ is a solution \implies solution set is not empty. If $A\mathbf{x} = \mathbf{0}$ and $A\mathbf{y} = \mathbf{0}$ then $A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$ \implies solution set is closed under addition. If $A\mathbf{x} = \mathbf{0}$ then $A(r\mathbf{x}) = r(A\mathbf{x}) = r\mathbf{0} = \mathbf{0}$

 \implies solution set is closed under scaling.

Thus the solution set is a subspace of \mathbb{R}^n .

Examples of subspaces of $\mathcal{M}_{2,2}(\mathbb{R})$: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

- diagonal matrices: b = c = 0
- upper triangular matrices: c = 0
- lower triangular matrices: b = 0
- symmetric matrices $(A^T = A)$: b = c
- anti-symmetric (or skew-symmetric) matrices $(A^T = -A)$: a = d = 0, c = -b
- matrices with zero trace: a + d = 0(trace = the sum of diagonal entries)
- matrices with zero determinant, ad bc = 0, do not form a subspace: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.