
MATH 323

Linear Algebra

Lecture 10:

Span. Spanning set.

Linear independence.



Subspaces of vector spaces

Definition. A vector space V0 is a subspace of a

vector space V if V0 ⊂ V and the linear operations
on V0 agree with the linear operations on V .

Proposition A subset S of a vector space V is a

subspace of V if and only if S is nonempty and
closed under linear operations, i.e.,

x, y ∈ S =⇒ x+ y ∈ S ,

x ∈ S =⇒ rx ∈ S for all r ∈ R.

Remarks. The zero vector in a subspace is the

same as the zero vector in V . Also, the subtraction
in a subspace agrees with that in V .



Let V be a vector space and v1, v2, . . . , vn ∈ V .

Consider the set L of all linear combinations
r1v1 + r2v2 + · · ·+ rnvn, where r1, r2, . . . , rn ∈ R.

Theorem L is a subspace of V .

Proof: First of all, L is not empty. For example,
0 = 0v1 + 0v2 + · · ·+ 0vn belongs to L.

The set L is closed under addition since

(r1v1+r2v2+ · · ·+rnvn) + (s1v1+s2v2+ · · ·+snvn) =
= (r1+s1)v1 + (r2+s2)v2 + · · ·+ (rn+sn)vn.

The set L is closed under scalar multiplication since

t(r1v1+r2v2+ · · ·+rnvn) = (tr1)v1+(tr2)v2+ · · ·+(trn)vn.

Thus L is a subspace of V .



Span: implicit definition

Let S be a subset of a vector space V .

Definition. The span of the set S , denoted
Span(S), is the smallest subspace of V that

contains S . That is,

• Span(S) is a subspace of V ;

• for any subspace W ⊂ V one has

S ⊂ W =⇒ Span(S) ⊂ W .

Remark. The span of any set S ⊂ V is well
defined (namely, it is the intersection of all
subspaces of V that contain S).



Span: effective description

Let S be a subset of a vector space V .

• If S = {v1, v2, . . . , vn} then Span(S) is the set
of all linear combinations r1v1 + r2v2 + · · ·+ rnvn,

where r1, r2, . . . , rn ∈ R.

• If S is an infinite set then Span(S) is the set of
all linear combinations r1u1 + r2u2 + · · ·+ rkuk ,

where u1, u2, . . . , uk ∈ S and r1, r2, . . . , rk ∈ R

(k ≥ 1).

• If S is the empty set then Span(S) = {0}.



Examples of subspaces of M2,2(R):

• The span of

(

1 0
0 0

)

and

(

0 0
0 1

)

consists of all

matrices of the form

a

(

1 0
0 0

)

+ b

(

0 0
0 1

)

=

(

a 0
0 b

)

.

This is the subspace of diagonal matrices.

• The span of

(

1 0

0 0

)

,

(

0 0

0 1

)

, and

(

0 1

1 0

)

consists of all matrices of the form

a

(

1 0
0 0

)

+ b

(

0 0
0 1

)

+ c

(

0 1
1 0

)

=

(

a c

c b

)

.

This is the subspace of symmetric matrices
(AT = A).



Examples of subspaces of M2,2(R):

• The span of

(

0 −1
1 0

)

is the subspace of

anti-symmetric matrices (AT = −A).

• The span of

(

1 0
0 0

)

,

(

0 0
0 1

)

, and

(

0 1
0 0

)

is the subspace of upper triangular matrices.

• The span of

(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

is the entire space M2,2(R).



Spanning set

Definition. A subset S of a vector space V is

called a spanning set for V if Span(S) = V .

Examples.

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and

e3 = (0, 0, 1) form a spanning set for R3 as

(x , y , z) = xe1 + ye2 + ze3.

• Matrices

(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)

form a spanning set for M2,2(R) as
(

a b

c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.



Problem Let v1 = (1, 2, 0), v2 = (3, 1, 1), and
w = (4,−7, 3). Determine whether w belongs to

Span(v1, v2).

We have to check if there exist r1, r2 ∈ R such that
w = r1v1 + r2v2. This vector equation is equivalent

to a system of linear equations:




4
−7
3



= r1





1
2
0



+r2





3
1
1



 ⇐⇒







4 = r1 + 3r2
−7 = 2r1 + r2
3 = 0r1 + r2

The system has a unique solution: r1 = −5, r2 = 3.

Thus w = −5v1 + 3v2 is in Span(v1, v2).



Problem Let v1 = (2, 5) and v2 = (1, 3). Show
that {v1, v2} is a spanning set for R2.

Take any vector w = (a, b) ∈ R
2. We have to

check that there exist r1, r2 ∈ R such that

w = r1v1+r2v2 ⇐⇒

{

2r1 + r2 = a

5r1 + 3r2 = b

Coefficient matrix: C =

(

2 1

5 3

)

. detC = 1 6= 0.

Since the matrix C is invertible, the system has a
unique solution for any a and b.

Thus Span(v1, v2) = R
2.



Problem Let v1 = (2, 5) and v2 = (1, 3). Show
that {v1, v2} is a spanning set for R2.

Alternative solution: First let us show that vectors

e1 = (1, 0) and e2 = (0, 1) belong to Span(v1, v2).

e1 = r1v1+r2v2 ⇐⇒

{

2r1 + r2 = 1

5r1 + 3r2 = 0
⇐⇒

{

r1 = 3

r2 = −5

e2 = r1v1+r2v2 ⇐⇒

{

2r1 + r2 = 0

5r1 + 3r2 = 1
⇐⇒

{

r1 = −1

r2 = 2

Thus e1 = 3v1 − 5v2 and e2 = −v1 + 2v2.
Then for any vector w = (a, b) ∈ R

2 we have
w = ae1 + be2 = a(3v1 − 5v2) + b(−v1 + 2v2)

= (3a− b)v1 + (−5a + 2b)v2.



Problem Let v1 = (2, 5) and v2 = (1, 3). Show
that {v1, v2} is a spanning set for R2.

Remarks on the alternative solution:

Notice that R2 is spanned by vectors e1 = (1, 0)
and e2 = (0, 1) since (a, b) = ae1 + be2.

This is why we have checked that vectors e1 and e2
belong to Span(v1, v2). Then

e1, e2 ∈ Span(v1, v2) =⇒ Span(e1, e2) ⊂ Span(v1, v2)

=⇒ R
2 ⊂ Span(v1, v2) =⇒ Span(v1, v2) = R

2.

In general, to show that Span(S1) = Span(S2),
it is enough to check that S1 ⊂ Span(S2) and

S2 ⊂ Span(S1).



More properties of span

Let S0 and S be subsets of a vector space V .

• S0 ⊂ S =⇒ Span(S0) ⊂ Span(S).

• Span(S0) = V and S0 ⊂ S =⇒ Span(S) = V .

• If v0, v1, . . . , vk is a spanning set for V and v0
is a linear combination of vectors v1, . . . , vk then

v1, . . . , vk is also a spanning set for V .

Indeed, if v0 = r1v1 + · · ·+ rkvk , then
t0v0 + t1v1 + · · ·+ tkvk = (t0r1 + t1)v1 + · · ·+ (t0rk + tk)vk .

• Span(S0 ∪ {v0}) = Span(S0) if and only if

v0 ∈ Span(S0).

If v0 ∈ Span(S0), then S0 ∪ {v0} ⊂ Span(S0), which implies
Span(S0 ∪ {v0}) ⊂ Span(S0). On the other hand,
Span(S0) ⊂ Span(S0 ∪ {v0}).



Linear independence

Definition. Let V be a vector space. Vectors

v1, v2, . . . , vk ∈ V are called linearly dependent

if they satisfy a relation

r1v1 + r2v2 + · · ·+ rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are

called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find

some distinct linearly dependent vectors v1, . . . , vk
in S . Otherwise S is linearly independent.



Examples of linear independence

• Vectors e1 = (1, 0, 0), e2 = (0, 1, 0), and
e3 = (0, 0, 1) in R

3.

xe1 + ye2 + ze3 = 0 =⇒ (x , y , z) = 0

=⇒ x = y = z = 0

• Matrices E11 =

(

1 0
0 0

)

, E12 =

(

0 1
0 0

)

,

E21 =

(

0 0
1 0

)

, and E22 =

(

0 0
0 1

)

.

aE11 + bE12 + cE21 + dE22 = O =⇒

(

a b

c d

)

= O

=⇒ a = b = c = d = 0



Examples of linear independence

• Polynomials 1, x , x2, . . . , xn.

a0 + a1x + a2x
2 + · · ·+ anx

n = 0 identically
=⇒ ai = 0 for 0 ≤ i ≤ n

• The infinite set {1, x , x2, . . . , xn, . . . }.

• Polynomials p1(x) = 1, p2(x) = x − 1, and
p3(x) = (x − 1)2.

a1p1(x) + a2p2(x) + a3p3(x) = a1 + a2(x − 1) + a3(x − 1)2 =
= (a1 − a2 + a3) + (a2 − 2a3)x + a3x

2.

Hence a1p1(x) + a2p2(x) + a3p3(x) = 0 identically
=⇒ a1 − a2 + a3 = a2 − 2a3 = a3 = 0
=⇒ a1 = a2 = a3 = 0



Problem Let v1 = (1, 2, 0), v2 = (3, 1, 1), and
v3 = (4,−7, 3). Determine whether vectors
v1, v2, v3 are linearly independent.

We have to check if there exist r1, r2, r3 ∈ R not all
zero such that r1v1 + r2v2 + r3v3 = 0.
This vector equation is equivalent to a system







r1 + 3r2 + 4r3 = 0

2r1 + r2 − 7r3 = 0
0r1 + r2 + 3r3 = 0





1 3 4 0

2 1 −7 0
0 1 3 0





The vectors v1, v2, v3 are linearly dependent if and

only if the coefficient matrix A = (v1, v2, v3) is
singular. We obtain that detA = 0 (it is singular).


