
MATH 323

Linear Algebra

Lecture 11:

Linear independence (continued).
Basis and dimension.



Linear independence

Definition. Let V be a vector space. Vectors

v1, v2, . . . , vk ∈ V are called linearly dependent
if they satisfy a relation

r1v1 + r2v2 + · · ·+ rkvk = 0,

where the coefficients r1, . . . , rk ∈ R are not all
equal to zero. Otherwise vectors v1, v2, . . . , vk are

called linearly independent. That is, if

r1v1+r2v2+ · · ·+rkvk = 0 =⇒ r1 = · · · = rk = 0.

A set S ⊂ V is linearly dependent if one can find

some distinct linearly dependent vectors v1, . . . , vk
in S . Otherwise S is linearly independent.



Theorem The following conditions are equivalent:
(i) vectors v1, . . . , vk (k ≥ 2) are linearly dependent;

(ii) one of vectors v1, . . . , vk is a linear combination
of the other k − 1 vectors.

Proof: (i) =⇒ (ii) Suppose that

r1v1 + r2v2 + · · ·+ rkvk = 0,

where ri 6= 0 for some i , 1 ≤ i ≤ k . Then

vi = − r1
ri
v1 − · · · − ri−1

ri
vi−1 −

ri+1

ri
vi+1 − · · · − rk

ri
vk .

(ii) =⇒ (i) Suppose that

vi = s1v1 + · · ·+ si−1vi−1 + si+1vi+1 + · · ·+ skvk

for some scalars sj . Then

s1v1 + · · ·+ si−1vi−1 − vi + si+1vi+1 + · · ·+ skvk = 0.



Problem. Let A =
(

−1 1
−1 0

)

. Determine whether

matrices A, A2, and A3 are linearly independent.

We have A =

(

−1 1
−1 0

)

, A2 =

(

0 −1
1 −1

)

, A3 =

(

1 0
0 1

)

.

The task is to check if there exist r1, r2, r3 ∈ R not all zero
such that r1A+ r2A

2 + r3A
3 = O.

This matrix equation is equivalent to a system














−r1 + 0r2 + r3 = 0
r1 − r2 + 0r3 = 0
−r1 + r2 + 0r3 = 0
0r1 − r2 + r3 = 0









−1 0 1 0
1 −1 0 0

−1 1 0 0
0 −1 1 0









→









1 −1 0 0
0 1 −1 0
0 0 0 0
0 0 0 0









The row echelon form of the augmented matrix shows there is
a free variable. Hence the system has a nonzero solution so
that the matrices are linearly dependent (one relation is
A+ A2 + A3 = O).



Problem. Show that functions ex , e2x , and e3x

are linearly independent in C∞(R).

Suppose that aex + be2x + ce3x = 0 for all x ∈ R, where
a, b, c are constants. We have to show that a = b = c = 0.

Differentiate this identity twice:

aex + be2x + ce3x = 0,

aex + 2be2x + 3ce3x = 0,

aex + 4be2x + 9ce3x = 0.

It follows that A(x)v = 0, where

A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a
b
c



.



A(x) =





ex e2x e3x

ex 2e2x 3e3x

ex 4e2x 9e3x



, v =





a

b
c



.

detA(x) = ex

∣

∣

∣

∣

∣

∣

1 e2x e3x

1 2e2x 3e3x

1 4e2x 9e3x

∣

∣

∣

∣

∣

∣

= exe2x

∣

∣

∣

∣

∣

∣

1 1 e3x

1 2 3e3x

1 4 9e3x

∣

∣

∣

∣

∣

∣

= exe2xe3x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
1 2 3
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
1 4 9

∣

∣

∣

∣

∣

∣

= e6x

∣

∣

∣

∣

∣

∣

1 1 1
0 1 2
0 3 8

∣

∣

∣

∣

∣

∣

= e6x
∣

∣

∣

∣

1 2
3 8

∣

∣

∣

∣

= 2e6x 6= 0.

Since the matrix A(x) is invertible, we obtain

A(x)v = 0 =⇒ v = 0 =⇒ a = b = c = 0



Wronskian

Let f1, f2, . . . , fn be smooth functions on an interval

[a, b]. The Wronskian W [f1, f2, . . . , fn] is a
function on [a, b] defined by

W [f1, f2, . . . , fn](x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′

n
(x)

...
...

. . .
...

f
(n−1)
1 (x) f

(n−1)
2 (x) · · · f

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Theorem If W [f1, f2, . . . , fn](x0) 6= 0 for some

x0 ∈ [a, b] then the functions f1, f2, . . . , fn are
linearly independent in C [a, b].



Basis

Definition. Let V be a vector space. Any linearly
independent spanning set for V is called a basis.

Suppose that a set S ⊂ V is a basis for V .

“Spanning set” means that any vector v ∈ V can be
represented as a linear combination

v = r1v1 + r2v2 + · · ·+ rkvk ,

where v1, . . . , vk are distinct vectors from S and
r1, . . . , rk ∈ R. “Linearly independent” implies that the above
representation is unique:

v = r1v1 + r2v2 + · · ·+ rkvk = r ′1v1 + r ′2v2 + · · ·+ r ′
k
vk

=⇒ (r1 − r ′1)v1 + (r2 − r ′2)v2 + · · ·+ (rk − r ′
k
)vk = 0

=⇒ r1 − r ′1 = r2 − r ′2 = . . . = rk − r ′
k
= 0



Basis

Definition. Let V be a vector space. Any linearly
independent spanning set for V is called a basis.

Theorem A nonempty set S ⊂ V is a basis for V
if and only if any vector v ∈ V is uniquely

represented as a linear combination
v = r1v1 + r2v2 + · · ·+ rkvk , where v1, . . . , vk are

distinct vectors from S and r1, . . . , rk ∈ R.

Remark on uniqueness. Expansions v = 2v1 − v2,
v = −v2 + 2v1, and v = 2v1 − v2 + 0v3 are considered the
same.



Examples. • Standard basis for Rn:
e1 = (1, 0, 0, . . . , 0, 0), e2 = (0, 1, 0, . . . , 0, 0),. . . ,

en = (0, 0, 0, . . . , 0, 1).
Indeed, (x1, x2, . . . , xn) = x1e1 + x2e2 + · · ·+ xnen.

• Matrices

(

1 0

0 0

)

,

(

0 1

0 0

)

,

(

0 0

1 0

)

,

(

0 0

0 1

)

form a basis for M2,2(R).
(

a b
c d

)

= a

(

1 0
0 0

)

+ b

(

0 1
0 0

)

+ c

(

0 0
1 0

)

+ d

(

0 0
0 1

)

.

• Polynomials 1, x , x2, . . . , xn−1 form a basis for

Pn = {a0 + a1x + · · ·+ an−1x
n−1 : ai ∈ R}.

• The infinite set {1, x , x2, . . . , xn, . . . } is a basis

for P , the space of all polynomials.



Let v, v1, v2, . . . , vk ∈ R
n and r1, r2, . . . , rk ∈ R.

The vector equation r1v1+r2v2+ · · ·+rkvk = v is
equivalent to the matrix equation Ax = v, where

A = (v1, v2, . . . , vk), x =





r1
...

rk



.

r1









a11
a21
...
an1









+ r2









a12
a22
...
an2









+ · · ·+ rk









a1k
a2k
...

ank









=









b1
b2
...
bn









⇐⇒









a11 a12 . . . a1k
a21 a22 . . . a2k
...

...
. . .

...
an1 an2 . . . ank

















r1
r2
...
rk









=









b1
b2
...
bn









⇐⇒ Ax = v



Let v, v1, v2, . . . , vk ∈ R
n and r1, r2, . . . , rk ∈ R.

The vector equation r1v1+r2v2+ · · ·+rkvk = v is
equivalent to the matrix equation Ax = v, where

A = (v1, v2, . . . , vk), x =





r1
...
rk



.

That is, A is the n×k matrix such that vectors v1, v2, . . . , vk
are consecutive columns of A.

• Vectors v1, . . . , vk span R
n if the row echelon

form of A has no zero rows.

• Vectors v1, . . . , vk are linearly independent if
the row echelon form of A has a leading entry in
each column (no free variables).

































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗





























































∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗































spanning
linear independence

no spanning
linear independence



















∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗

















































∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

∗































spanning
no linear independence

no spanning
no linear independence



Bases for Rn

Let v1, v2, . . . , vk be vectors in R
n.

Theorem 1 If k < n then the vectors
v1, v2, . . . , vk do not span R

n.

Theorem 2 If k > n then the vectors

v1, v2, . . . , vk are linearly dependent.

Theorem 3 If k = n then the following conditions
are equivalent:

(i) {v1, v2, . . . , vn} is a basis for Rn;
(ii) {v1, v2, . . . , vn} is a spanning set for Rn;
(iii) {v1, v2, . . . , vn} is a linearly independent set.



Example. Consider vectors v1 = (1,−1, 1),
v2 = (1, 0, 0), v3 = (1, 1, 1), and v4 = (1, 2, 4) in R

3.

Vectors v1 and v2 are linearly independent (as they

are not parallel), but they do not span R
3.

Vectors v1, v2, v3 are linearly independent since
∣

∣

∣

∣

∣

∣

1 1 1
−1 0 1

1 0 1

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

−1 1
1 1

∣

∣

∣

∣

= −(−2) = 2 6= 0.

Therefore {v1, v2, v3} is a basis for R3.

Vectors v1, v2, v3, v4 span R
3 (because v1, v2, v3

already span R
3), but they are linearly dependent.



Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis,

then all bases for V are finite and have the same
number of elements.

Definition. The dimension of a vector space V ,

denoted dimV , is the number of elements in any of
its bases.



Examples. • dimR
n = n

• M2,2(R): the space of 2×2 matrices
dimM2,2(R) = 4

• Mm,n(R): the space of m×n matrices

dimMm,n(R) = mn

• Pn: polynomials of degree less than n
dimPn = n

• P : the space of all polynomials
dimP = ∞

• {0}: the trivial vector space

dim {0} = 0


