Lecture 11:

Linear Algebra

MATH 323

Linear independence (continued).

Basis and dimension.

Linear independence

Definition. Let V be a vector space. Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in V$ are called **linearly dependent** if they satisfy a relation

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0},$$

where the coefficients $r_1, \ldots, r_k \in \mathbb{R}$ are not all equal to zero. Otherwise vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ are called **linearly independent**. That is, if

$$r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{0} \implies r_1=\cdots=r_k=0.$$

A set $S \subset V$ is **linearly dependent** if one can find some distinct linearly dependent vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ in S. Otherwise S is **linearly independent**.

Theorem The following conditions are equivalent: (i) vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ ($k \ge 2$) are linearly dependent; (ii) one of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ is a linear combination of the other k-1 vectors.

Proof: (i)
$$\Longrightarrow$$
 (ii) Suppose that $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k = \mathbf{0}$,

where $r_i \neq 0$ for some i, $1 \leq i \leq k$. Then

$$\mathbf{v}_i = -\frac{r_1}{r_i}\mathbf{v}_1 - \cdots - \frac{r_{i-1}}{r_i}\mathbf{v}_{i-1} - \frac{r_{i+1}}{r_i}\mathbf{v}_{i+1} - \cdots - \frac{r_k}{r_i}\mathbf{v}_k.$$

(ii) \Longrightarrow (i) Suppose that

$$\mathbf{v}_i = s_1 \mathbf{v}_1 + \dots + s_{i-1} \mathbf{v}_{i-1} + s_{i+1} \mathbf{v}_{i+1} + \dots + s_k \mathbf{v}_k$$
 for some scalars s_j . Then

 $s_1\mathbf{v}_1+\cdots+s_{i-1}\mathbf{v}_{i-1}-\mathbf{v}_i+s_{i+1}\mathbf{v}_{i+1}+\cdots+s_k\mathbf{v}_k=\mathbf{0}.$

Problem. Let $A = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$. Determine whether

matrices A, A^2 , and A^3 are linearly independent.

We have
$$A=\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$$
, $A^2=\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$, $A^3=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

The task is to check if there exist $r_1, r_2, r_3 \in \mathbb{R}$ not all zero such that $r_1A + r_2A^2 + r_3A^3 = O$.

This matrix equation is equivalent to a system

$$\begin{cases} -r_1 + 0r_2 + r_3 = 0 \\ r_1 - r_2 + 0r_3 = 0 \\ -r_1 + r_2 + 0r_3 = 0 \\ 0r_1 - r_2 + r_3 = 0 \end{cases} \qquad \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

The row echelon form of the augmented matrix shows there is a free variable. Hence the system has a nonzero solution so that the matrices are linearly dependent (one relation is $A + A^2 + A^3 = O$).

Problem. Show that functions e^x , e^{2x} , and e^{3x} are linearly independent in $C^{\infty}(\mathbb{R})$.

Suppose that $ae^x + be^{2x} + ce^{3x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

Differentiate this identity twice:

$$ae^{x} + be^{2x} + ce^{3x} = 0,$$

$$ae^{x} + 2be^{2x} + 3ce^{3x} = 0$$

$$ae^{x} + 4be^{2x} + 9ce^{3x} = 0.$$

It follows that $A(x)\mathbf{v} = \mathbf{0}$, where

$$A(x) = \begin{pmatrix} e^{x} & e^{2x} & e^{3x} \\ e^{x} & 2e^{2x} & 3e^{3x} \\ e^{x} & 4e^{2x} & 9e^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$$

$$= e^{x}e^{2x}e^{3x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 1 & 4 & 9 \end{vmatrix}$$
$$= e^{6x} \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 3 & 8 \end{vmatrix} = e^{6x} \begin{vmatrix} 1 & 2 \\ 3 & 8 \end{vmatrix} = 2e^{6x} \neq 0.$$

 $\det A(x) = e^{x} \begin{vmatrix} 1 & e^{2x} & e^{3x} \\ 1 & 2e^{2x} & 3e^{3x} \\ 1 & 4e^{2x} & 9e^{3x} \end{vmatrix} = e^{x}e^{2x} \begin{vmatrix} 1 & 1 & e^{3x} \\ 1 & 2 & 3e^{3x} \\ 1 & 4 & 9e^{3x} \end{vmatrix}$

 $A(x) = \begin{pmatrix} e^x & e^{2x} & e^{3x} \\ e^x & 2e^{2x} & 3e^{3x} \\ e^x & Ae^{2x} & Qe^{3x} \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}.$

Since the matrix A(x) is invertible, we obtain $A(x)\mathbf{v} = \mathbf{0} \implies \mathbf{v} = \mathbf{0} \implies a = b = c = 0$

Wronskian

Let $f_1, f_2, ..., f_n$ be smooth functions on an interval [a, b]. The **Wronskian** $W[f_1, f_2, ..., f_n]$ is a function on [a, b] defined by

$$W[f_1, f_2, \ldots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & \ddots & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}.$$

Theorem If $W[f_1, f_2, ..., f_n](x_0) \neq 0$ for some $x_0 \in [a, b]$ then the functions $f_1, f_2, ..., f_n$ are linearly independent in C[a, b].

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a **basis**.

Suppose that a set $S \subset V$ is a basis for V.

"Spanning set" means that any vector $\mathbf{v} \in V$ can be represented as a linear combination

$$\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \cdots + r_k \mathbf{v}_k,$$

where $\mathbf{v}_1, \dots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \dots, r_k \in \mathbb{R}$. "Linearly independent" implies that the above representation is unique:

$$\mathbf{v} = r_1 \mathbf{v}_1 + r_2 \mathbf{v}_2 + \dots + r_k \mathbf{v}_k = r'_1 \mathbf{v}_1 + r'_2 \mathbf{v}_2 + \dots + r'_k \mathbf{v}_k$$

$$\implies (r_1 - r'_1) \mathbf{v}_1 + (r_2 - r'_2) \mathbf{v}_2 + \dots + (r_k - r'_k) \mathbf{v}_k = \mathbf{0}$$

$$\implies r_1 - r'_1 = r_2 - r'_2 = \dots = r_k - r'_k = \mathbf{0}$$

Basis

Definition. Let V be a vector space. Any linearly independent spanning set for V is called a **basis**.

Theorem A nonempty set $S \subset V$ is a basis for V if and only if any vector $\mathbf{v} \in V$ is uniquely represented as a linear combination $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_k\mathbf{v}_k$, where $\mathbf{v}_1, \ldots, \mathbf{v}_k$ are distinct vectors from S and $r_1, \ldots, r_k \in \mathbb{R}$.

Remark on uniqueness. Expansions $\mathbf{v}=2\mathbf{v}_1-\mathbf{v}_2$, $\mathbf{v}=-\mathbf{v}_2+2\mathbf{v}_1$, and $\mathbf{v}=2\mathbf{v}_1-\mathbf{v}_2+0\mathbf{v}_3$ are considered the same.

Examples. • Standard basis for \mathbb{R}^n : $\mathbf{e}_1 = (1, 0, 0, \dots, 0, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0, 0), \dots$

$$\mathbf{e}_n = (0, 0, 0, \dots, 0, 1).$$

Indeed, $(x_1, x_2, \dots, x_n) = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n.$

• Matrices $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

form a basis for
$$\mathcal{M}_{2,2}(\mathbb{R})$$
.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + d \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

• Polynomials 1 x
$$x^2$$
 x^{n-1} form a basis for

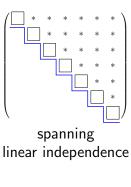
- Polynomials $1, x, x^2, \dots, x^{n-1}$ form a basis for $\mathcal{P}_n = \{a_0 + a_1x + \dots + a_{n-1}x^{n-1} : a_i \in \mathbb{R}\}.$
- The infinite set $\{1, x, x^2, \dots, x^n, \dots\}$ is a basis for \mathcal{P} , the space of all polynomials.

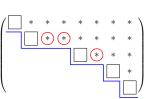
Let $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $r_1, r_2, \dots, r_k \in \mathbb{R}$.

The vector equation $r_1\mathbf{v}_1+r_2\mathbf{v}_2+\cdots+r_k\mathbf{v}_k=\mathbf{v}$ is equivalent to the matrix equation $A\mathbf{x}=\mathbf{v}$, where

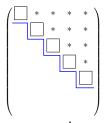
$$A = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k), \qquad \mathbf{x} = \begin{pmatrix} r_1 \\ \vdots \\ r_k \end{pmatrix}.$$

$$r_1\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix} + r_2\begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n2} \end{pmatrix} + \cdots + r_k\begin{pmatrix} a_{1k} \\ a_{2k} \\ \vdots \\ a_{nk} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \iff$$

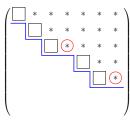

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ a_{21} & a_{22} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_k \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} \iff A\mathbf{x} = \mathbf{v}$$


Let $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ and $r_1, r_2, \dots, r_k \in \mathbb{R}$. The vector equation $r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \dots + r_k\mathbf{v}_k = \mathbf{v}$ is equivalent to the matrix equation $A\mathbf{x} = \mathbf{v}$, where

$$A = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k), \qquad \mathbf{x} = \begin{pmatrix} r_1 \\ \vdots \\ r_k \end{pmatrix}.$$


That is, A is the $n \times k$ matrix such that vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are consecutive columns of A.

- Vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ span \mathbb{R}^n if the row echelon form of A has no zero rows.
- Vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent if the row echelon form of A has a leading entry in each column (no free variables).



spanning no linear independence

no spanning linear independence

no spanning no linear independence

Bases for \mathbb{R}^n

Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in \mathbb{R}^n .

Theorem 1 If k < n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ do not span \mathbb{R}^n .

Theorem 2 If k > n then the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly dependent.

Theorem 3 If k = n then the following conditions are equivalent:

- (i) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for \mathbb{R}^n ;
- (ii) $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a spanning set for \mathbb{R}^n ;
- (iii) $\{v_1, v_2, \dots, v_n\}$ is a linearly independent set.

Example. Consider vectors $\mathbf{v}_1 = (1, -1, 1)$, $\mathbf{v}_2 = (1, 0, 0)$, $\mathbf{v}_3 = (1, 1, 1)$, and $\mathbf{v}_4 = (1, 2, 4)$ in \mathbb{R}^3 .

Vectors \mathbf{v}_1 and \mathbf{v}_2 are linearly independent (as they are not parallel), but they do not span \mathbb{R}^3 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are linearly independent since

$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 1 & 0 & 1 \end{vmatrix} = - \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -(-2) = 2 \neq 0.$$

Therefore $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for \mathbb{R}^3 .

Vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ span \mathbb{R}^3 (because $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ already span \mathbb{R}^3), but they are linearly dependent.

Dimension

Theorem 1 Any vector space has a basis.

Theorem 2 If a vector space V has a finite basis, then all bases for V are finite and have the same number of elements.

Definition. The **dimension** of a vector space V, denoted dim V, is the number of elements in any of its bases.

Examples. • dim $\mathbb{R}^n = n$

• $\mathcal{M}_{2,2}(\mathbb{R})$: the space of 2×2 matrices dim $\mathcal{M}_{2,2}(\mathbb{R})=4$

• $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices $\dim \mathcal{M}_{m,n}(\mathbb{R}) = mn$

- \mathcal{P}_n : polynomials of degree less than n dim $\mathcal{P}_n = n$
- \bullet $\ensuremath{\mathcal{P}}$: the space of all polynomials $\dim \ensuremath{\mathcal{P}} = \infty$
- $\{ {f 0} \}$: the trivial vector space $\dim \{ {f 0} \} = 0$