MATH 323 Linear Algebra

Lecture 13: Review for Test 1.

Topics for Test 1

Part I: Elementary linear algebra (Leon/de Pillis 1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix. Elementary row operations, row echelon form and reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon/de Pillis 3.1–3.4)

- Definition of a vector space.
- Basic examples of vector spaces.
- Basic properties of vector spaces.
- Subspaces of vector spaces.
- Span, spanning set.
- Linear independence.
- Basis and dimension.

Sample problems for Test 1

Problem 1 Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3, and p(3) = 7.

Problem 2 Let A be a square matrix such that $A^3 = O$. (i) Prove that the matrix A is not invertible. (ii) Prove that the matrix A + I is invertible.

Problem 3 Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$

(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A⁻¹.

Sample problems for Test 1

Problem 4 Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0. (ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0. (iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$. (iv) The set S_4 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

Problem 5 Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.

(i) The set S₁ of all arithmetic progressions.
(ii) The set S₂ of all geometric progressions.
(iii) The set S₃ of all square-summable sequences, i.e., sequences (x₁, x₂, x₃,...) such that ∑_{n=1}[∞] |x_n|² < ∞.

Sample problems for Test 1

Problem 6 Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$, and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Problem 7 Let *V* denote the solution set of a system $\begin{cases} x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0. \end{cases}$

Find a basis for this subspace of $\mathbb{R}^4,$ then extend it to a basis for $\mathbb{R}^4.$

Problem 1. Find a quadratic polynomial p(x) such that p(1) = 1, p(2) = 3, and p(3) = 7.

Let
$$p(x) = a + bx + cx^2$$
. Then $p(1) = a + b + c$,
 $p(2) = a + 2b + 4c$, and $p(3) = a + 3b + 9c$.

The coefficients a, b, and c have to be chosen so that

$$\begin{cases} a+b+c = 1, \\ a+2b+4c = 3, \\ a+3b+9c = 7. \end{cases}$$

We solve this system of linear equations using elementary operations:

$$\begin{cases} a+b+c=1 \\ a+2b+4c=3 \\ a+3b+9c=7 \end{cases} \iff \begin{cases} a+b+c=1 \\ b+3c=2 \\ a+3b+9c=7 \end{cases}$$

$$\iff \left\{ \begin{array}{l} a+b+c=1\\ b+3c=2\\ a+3b+9c=7 \end{array} \right. \iff \left\{ \begin{array}{l} a+b+c=1\\ b+3c=2\\ 2b+8c=6 \end{array} \right. \right.$$

$$\iff \left\{ \begin{array}{l} a+b+c=1\\ b+3c=2\\ b+4c=3 \end{array} \right\} \iff \left\{ \begin{array}{l} a+b+c=1\\ b+3c=2\\ c=1 \end{array} \right.$$

$$\iff \left\{ \begin{array}{l} a+b+c=1\\ b=-1\\ c=1 \end{array} \right. \iff \left\{ \begin{array}{l} a=1\\ b=-1\\ c=1 \end{array} \right. \right.$$

Thus the desired polynomial is $p(x) = x^2 - x + 1$.

Problem 2. Let A be a square matrix such that $A^3 = O$.

(i) Prove that the matrix A is not invertible.

The proof is by contradiction. Assume that A is invertible. Since any product of invertible matrices is also invertible, the matrix $A^3 = AAA$ should be invertible as well. However $A^3 = O$ is singular.

Problem 2. Let A be a square matrix such that $A^3 = O$.

(ii) Prove that the matrix A + I is invertible.

It is enough to show that the equation $(A + I)\mathbf{x} = \mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are column vectors) has a unique solution $\mathbf{x} = \mathbf{0}$. Indeed, $(A + I)\mathbf{x} = \mathbf{0} \implies A\mathbf{x} + I\mathbf{x} = \mathbf{0} \implies A\mathbf{x} = -\mathbf{x}$. Then $A^2\mathbf{x} = A(A\mathbf{x}) = A(-\mathbf{x}) = -A\mathbf{x} = -(-\mathbf{x}) = \mathbf{x}$. Further, $A^3\mathbf{x} = A(A^2\mathbf{x}) = A\mathbf{x} = -\mathbf{x}$. On the other hand, $A^3\mathbf{x} = O\mathbf{x} = \mathbf{0}$. Hence $-\mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$.

Alternatively, we can use equalities $X^3 + Y^3 = (X+Y)(X^2 - XY + Y^2) = (X^2 - XY + Y^2)(X+Y)$, which hold whenever matrices X and Y commute: XY = YX. In particular, they hold for X = A and Y = I. We obtain

$$(A + I)(A^2 - A + I) = (A^2 - A + I)(A + I) = A^3 + I^3 = I$$

so that $(A + I)^{-1} = A^2 - A + I$.

Problem 3. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of *A* from the 3rd row:

$$\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix}.$$

Expand the determinant by the 3rd row:

$$\begin{vmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 0 & 0 & -1 & 0 \\ 2 & 0 & 0 & 1 \end{vmatrix} = (-1) \begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & 0 \\ 2 & 0 & 1 \end{vmatrix}$$

٠

Expand the determinant by the 3rd column:

$$(-1)\begin{vmatrix} 1 & -2 & 1 \\ 2 & 3 & 0 \\ 2 & 0 & 1 \end{vmatrix} = (-1)\left(\begin{vmatrix} 2 & 3 \\ 2 & 0 \end{vmatrix} + \begin{vmatrix} 1 & -2 \\ 2 & 3 \end{vmatrix}\right) = -1.$$

Problem 3. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(ii) Find the inverse matrix A^{-1} .

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$(A \mid I) = \begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & | & 0 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix. Subtract 2 times the 1st row from the 2nd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\ 2 & 0 & -1 & 1 & | & 0 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 1st row from the 3rd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & | & 0 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 1st row from the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & | & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & | & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \end{pmatrix}$$

Subtract 2 times the 4th row from the 2nd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 \\ 0 & -1 & 10 & 0 \\ 0 & 4 & -9 & -1 \\ 0 & 4 & -8 & -1 \\ -2 & 0 & 0 & 1 \end{pmatrix}$$

Subtract the 4th row from the 3rd row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 4 & -8 & -1 & | & -2 & 0 & 0 & 1 \end{pmatrix}$$

Add 4 times the 2nd row to the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & | & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & | & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & | & 6 & 4 & 0 & -7 \end{pmatrix}$$

Add 32 times the 3rd row to the 4th row:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 6 & 4 & 32 & -39 \end{pmatrix}$$

Multiply the 2nd, the 3rd, and the 4th rows by -1:

$$\begin{pmatrix} 1 & -2 & 4 & 1 & | & 1 & 0 & 0 & 0 \\ 0 & 1 & -10 & 0 & | & -2 & -1 & 0 & 2 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & | & -6 & -4 & -32 & 39 \end{pmatrix}$$

Subtract the 4th row from the 1st row:

$$\begin{pmatrix} 1 & -2 & 4 & 0 & | & 7 & 4 & 32 & -39 \\ 0 & 1 & -10 & 0 & | & -2 & -1 & 0 & 2 \\ 0 & 0 & 1 & 0 & | & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & | & -6 & -4 & -32 & 39 \end{pmatrix}$$

Add 10 times the 3rd row to the 2nd row:

$$\begin{pmatrix} 1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix}$$

Subtract 4 times the 3rd row from the 1st row:

$$\begin{pmatrix} 1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix}$$

Add 2 times the 2nd row to the 1st row:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39 \end{pmatrix} = (I \mid A^{-1})$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of *A*. Thus

$$\mathcal{A}^{-1} = egin{pmatrix} 1 & -2 & 4 & 1 \ 2 & 3 & 2 & 0 \ 2 & 0 & -1 & 1 \ 2 & 0 & 0 & 1 \end{pmatrix}^{-1} = egin{pmatrix} 3 & 2 & 16 & -19 \ -2 & -1 & -10 & 12 \ 0 & 0 & -1 & 1 \ -6 & -4 & -32 & 39 \end{pmatrix}.$$

Problem 3. Let
$$A = \begin{pmatrix} 1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1 \end{pmatrix}$$
.

(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1.

It follows that det
$$I = (-1)^3 \det A$$
.
 $\implies \det A = -\det I = -1$

Problem 4. Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(i) The set S_1 of vectors $(x, y, z) \in \mathbb{R}^3$ such that xyz = 0.

 $(0,0,0) \in S_1 \implies S_1$ is not empty. $xyz = 0 \implies (rx)(ry)(rz) = r^3xyz = 0.$ That is, $\mathbf{v} = (x, y, z) \in S_1 \implies r\mathbf{v} = (rx, ry, rz) \in S_1.$ Hence S_1 is closed under scalar multiplication. However S_1 is not closed under addition. Counterexample: (1,1,0) + (0,0,1) = (1,1,1). **Problem 4.** Determine which of the following subsets of \mathbb{R}^3 are subspaces. Briefly explain.

A subset of \mathbb{R}^3 is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.

(ii) The set S_2 of vectors $(x, y, z) \in \mathbb{R}^3$ such that x + y + z = 0. $(0, 0, 0) \in S_2 \implies S_2$ is not empty. $x + y + z = 0 \implies rx + ry + rz = r(x + y + z) = 0$. Hence S_2 is closed under scalar multiplication. $x + y + z = x' + y' + z' = 0 \implies$ (x + x') + (y + y') + (z + z') = (x + y + z) + (x' + y' + z') = 0. That is, $\mathbf{v} = (x, y, z)$, $\mathbf{v}' = (x', y', z') \in S_2$

 $\implies \mathbf{v} + \mathbf{v}' = (x + x', y + y', z + z') \in S_2.$

Hence S_2 is closed under addition.

(iii) The set S_3 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 + z^2 = 0$.

$$y^2+z^2=0 \iff y=z=0.$$

Now it is easy to see that S_3 is a nonempty set closed under addition and scalar multiplication. Alternatively, S_3 is the solution set of a system of linear homogeneous equations, hence a subspace.

(iv) The set
$$S_4$$
 of vectors $(x, y, z) \in \mathbb{R}^3$ such that $y^2 - z^2 = 0$.

 S_4 is a nonempty set closed under scalar multiplication. However S_4 is not closed under addition. Counterexample: (0,1,1) + (0,1,-1) = (0,2,0). **Problem 5.** Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.

(i) S_1 : arithmetic progressions.

A sequence $\mathbf{x} = (x_1, x_2, x_3, ...)$ is an arithmetic progression if $x_{n+1} = x_n + d$ for some $d \in \mathbb{R}$ and all n. $\mathbf{0} = (0, 0, 0, ...)$ is an arithmetic progression with common difference d = 0. Hence $\mathbf{0} \in S_1 \implies S_1$ is not empty. Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ and $\mathbf{y} = (y_1, y_2, y_3, ...)$ are arithmetic progressions. That is, $x_{n+1} = x_n + d$ and $y_{n+1} = y_n + d'$ for some $d, d' \in \mathbb{R}$ and all n. Then $x_{n+1} + y_{n+1} = (x_n + d) + (y_n + d') = (x_n + y_n) + (d + d')$ for all n so that $\mathbf{x} + \mathbf{y}$ is an arithmetic progression with common

difference d + d'. Also, $rx_{n+1} = rx_n + rd$ for any scalar r and all n. Hence $r\mathbf{x}$ is an arithmetic progression with common difference rd.

Therefore the set S_1 is closed under addition and scalar multiplication. Thus S_1 is a subspace of \mathbb{R}^{∞} .

Problem 5. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.

(ii) S_2 : geometric progressions.

A sequence $\mathbf{x} = (x_1, x_2, x_3, ...)$ is a geometric progression if $x_{n+1} = x_n q$ for some $q \neq 0$ and all n. $\mathbf{0} = (0, 0, 0, ...)$ is a geometric progression with common ratio q = 1. Hence $\mathbf{0} \in S_2 \implies S_2$ is not empty. Suppose $\mathbf{x} = (x_1, x_2, x_3, ...)$ is a geometric progression with common ratio q. Then $rx_{n+1} = r(x_n q) = (rx_n)q$ for any scalar r and all n. Hence $r\mathbf{x}$ is also a geometric progression with the same common ratio q. Therefore the set S_2 is closed under scalar multiplication.

However S_2 is not closed under addition. Counterexample: $(1,1,1,\ldots) + (2,4,8,\ldots,2^n,\ldots) = (3,5,9,\ldots,2^n+1,\ldots).$ Thus S_2 is not a subspace of \mathbb{R}^{∞} . **Problem 5.** Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.

(iii) S_3 : square-summable sequences.

A sequence $\mathbf{x} = (x_1, x_2, x_3, \dots)$ is called square-summable if the series $\sum_{n=1}^{\infty} |x_n|^2$ converges. For $\mathbf{0} = (0, 0, 0, ...)$, we have $\sum_{n=1}^{\infty} |0|^2 = 0 < \infty$. Hence $\mathbf{0} \in S_3 \implies S_3$ is not empty. Suppose **x** = $(x_1, x_2, x_3, ...)$ and **y** = $(y_1, y_2, y_3, ...)$ are both square-summable. Using the inequality $(a + b)^2 < 2a^2 + 2b^2$, we obtain $|x_n + y_n|^2 < 2|x_n|^2 + 2|y_n|^2$ for all *n*. Hence $\sum_{n=1}^{\infty} |x_n + y_n|^2 \le 2 \sum_{n=1}^{\infty} |x_n|^2 + 2 \sum_{n=1}^{\infty} |y_n|^2 < \infty$ so that $\mathbf{x} + \mathbf{y} \in S_3$. Also, $\sum_{n=1}^{\infty} |rx_n|^2 = |r|^2 \sum_{n=1}^{\infty} |x_n|^2 < \infty$ for any scalar r so that $r\mathbf{x} \in S_3$. Therefore the set S_3 is closed under addition and scalar

multiplication. Thus S_3 is a subspace of \mathbb{R}^{∞} .

Problem 7. Let V denote the solution set of a system $\begin{cases} x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0. \end{cases}$

Find a basis for this subspace of \mathbb{R}^4 .

To find a basis, we need to solve the system. To this end, we subtract 2 times the 1st equation from the 2nd one, then switch the equations:

$$\begin{cases} x_1 - x_3 - 2x_4 = 0 \\ x_2 + 2x_3 + 3x_4 = 0 \end{cases} \iff \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \end{cases}$$

 x_3 and x_4 are free variables. General solution:

$$\left\{egin{array}{ll} x_1 = t + 2s \ x_2 = -2t - 3s \ x_3 = t \ x_4 = s \end{array}
ight. (t,s\in\mathbb{R})$$

In vector form, $(x_1, x_2, x_3, x_4) = t(1, -2, 1, 0) + s(2, -3, 0, 1)$. Hence vectors (1, -2, 1, 0) and (2, -3, 0, 1) span V. Since they are also linearly independent, they form a basis for V. **Problem 7.** Let V denote the solution set of a system $\begin{cases} x_2 + 2x_3 + 3x_4 = 0, \\ x_1 + 2x_2 + 3x_3 + 4x_4 = 0. \end{cases}$

Find a basis for this subspace of \mathbb{R}^4 , then extend it to a basis for \mathbb{R}^4 .

Vectors $\mathbf{v}_1 = (1, -2, 1, 0)$ and $\mathbf{v}_2 = (2, -3, 0, 1)$ form a basis for V. To extend them to a basis for \mathbb{R}^4 , we need to add two vectors \mathbf{v}_3 and \mathbf{v}_4 so that four vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ are linearly independent. We can choose new vectors from the standard basis (or any other spanning set for \mathbb{R}^4). For example, we can add $\mathbf{e}_1 = (1, 0, 0, 0)$ and $\mathbf{e}_2 = (0, 1, 0, 0)$. To verify linear independence of vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1, \mathbf{e}_2$, we check that the matrix whose columns are these vectors is invertible. Indeed,

$$\begin{vmatrix} 1 & 2 & 1 & 0 \\ -2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & 1 & 0 \\ 0 & -3 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix} = 1 \neq 0.$$

Problem 6. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$ and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

The functions f_1, f_2, f_3 are linearly independent whenever the Wronskian $W[f_1, f_2, f_3]$ is not identically zero.

$$\mathcal{W}[f_{1}, f_{2}, f_{3}](x) = \begin{vmatrix} f_{1}(x) & f_{2}(x) & f_{3}(x) \\ f_{1}'(x) & f_{2}'(x) & f_{3}'(x) \\ f_{1}''(x) & f_{2}''(x) & f_{3}''(x) \end{vmatrix} = \begin{vmatrix} x & xe^{x} & e^{-x} \\ 1 & e^{x} + xe^{x} & -e^{-x} \\ 0 & 2e^{x} + xe^{x} & e^{-x} \end{vmatrix}$$
$$= e^{-x} \begin{vmatrix} x & xe^{x} & 1 \\ 1 & e^{x} + xe^{x} & -1 \\ 0 & 2e^{x} + xe^{x} & 1 \end{vmatrix} = \begin{vmatrix} x & x & 1 \\ 1 & 1 + x & -1 \\ 0 & 2 + x & 1 \end{vmatrix}$$
$$= x \begin{vmatrix} 1+x & -1 \\ 2+x & 1 \end{vmatrix} - \begin{vmatrix} x & 1 \\ 2+x & 1 \end{vmatrix} = x(2x+3) + 2 = 2x^{2} + 3x + 2.$$

The polynomial $2x^2 + 3x + 2$ is never zero.

Problem 6. Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$ and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $af_1(x)+bf_2(x)+cf_3(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

Let us differentiate this identity:

$$ax + bxe^{x} + ce^{-x} = 0,$$

$$a + be^{x} + bxe^{x} - ce^{-x} = 0,$$

$$2be^{x} + bxe^{x} + ce^{-x} = 0,$$

$$3be^{x} + bxe^{x} - ce^{-x} = 0,$$

$$4be^{x} + bxe^{x} + ce^{-x} = 0.$$

(the 5th identity)-(the 3rd identity): $2be^{x} = 0 \implies b = 0$. Substitute b = 0 in the 3rd identity: $ce^{-x} = 0 \implies c = 0$. Substitute b = c = 0 in the 2nd identity: a = 0. **Problem 6.** Show that the functions $f_1(x) = x$, $f_2(x) = xe^x$ and $f_3(x) = e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $ax + bxe^{x} + ce^{-x} = 0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that a = b = c = 0.

For any $x \neq 0$ divide both sides of the identity by xe^x :

$$ae^{-x} + b + cx^{-1}e^{-2x} = 0.$$

The left-hand side approaches *b* as $x \to +\infty$. $\implies b = 0$

Now $ax + ce^{-x} = 0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x:

$$a+cx^{-1}e^{-x}=0.$$

The left-hand side approaches *a* as $x \to +\infty$. $\implies a = 0$

Now $ce^{-x} = 0 \implies c = 0$.