MATH 323
 Linear Algebra
 Lecture 13:
 Review for Test 1.

Topics for Test 1

Part I: Elementary linear algebra (Leon/de Pillis 1.1-1.5, 2.1-2.2)

- Systems of linear equations: elementary operations, Gaussian elimination, back substitution.
- Matrix of coefficients and augmented matrix.

Elementary row operations, row echelon form and reduced row echelon form.

- Matrix algebra. Inverse matrix.
- Determinants: explicit formulas for 2×2 and 3×3 matrices, row and column expansions, elementary row and column operations.

Topics for Test 1

Part II: Abstract linear algebra (Leon/de Pillis 3.1-3.4)

- Definition of a vector space.
- Basic examples of vector spaces.
- Basic properties of vector spaces.
- Subspaces of vector spaces.
- Span, spanning set.
- Linear independence.
- Basis and dimension.

Sample problems for Test 1

Problem 1 Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Problem 2 Let A be a square matrix such that $A^{3}=O$.
(i) Prove that the matrix A is not invertible.
(ii) Prove that the matrix $A+I$ is invertible.

Problem 3 Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A^{-1}.

Sample problems for Test 1

Problem 4 Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.

Problem 5 Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.
(i) The set S_{1} of all arithmetic progressions.
(ii) The set S_{2} of all geometric progressions.
(iii) The set S_{3} of all square-summable sequences, i.e., sequences $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ such that $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$.

Sample problems for Test 1

Problem 6 Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$, and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Problem 7 Let V denote the solution set of a system
$\left\{\begin{array}{l}x_{2}+2 x_{3}+3 x_{4}=0, \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 .\end{array}\right.$
Find a basis for this subspace of \mathbb{R}^{4}, then extend it to a basis for \mathbb{R}^{4}.

Problem 1. Find a quadratic polynomial $p(x)$ such that $p(1)=1, p(2)=3$, and $p(3)=7$.

Let $p(x)=a+b x+c x^{2}$. Then $p(1)=a+b+c$, $p(2)=a+2 b+4 c$, and $p(3)=a+3 b+9 c$.
The coefficients a, b, and c have to be chosen so that

$$
\left\{\begin{array}{l}
a+b+c=1, \\
a+2 b+4 c=3, \\
a+3 b+9 c=7 .
\end{array}\right.
$$

We solve this system of linear equations using elementary operations:

$$
\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ a + 2 b + 4 c = 3 } \\
{ a + 3 b + 9 c = 7 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a+b+c=1 \\
b+3 c=2 \\
a+3 b+9 c=7
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ b + 3 c = 2 } \\
{ a + 3 b + 9 c = 7 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a+b+c=1 \\
b+3 c=2 \\
2 b+8 c=6
\end{array}\right.\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ b + 3 c = 2 } \\
{ b + 4 c = 3 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a+b+c=1 \\
b+3 c=2 \\
c=1
\end{array}\right.\right. \\
& \Longleftrightarrow\left\{\begin{array} { l }
{ a + b + c = 1 } \\
{ b = - 1 } \\
{ c = 1 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a=1 \\
b=-1 \\
c=1
\end{array}\right.\right.
\end{aligned}
$$

Thus the desired polynomial is $p(x)=x^{2}-x+1$.

Problem 2. Let A be a square matrix such that

 $A^{3}=0$.(i) Prove that the matrix A is not invertible.

The proof is by contradiction. Assume that A is invertible. Since any product of invertible matrices is also invertible, the matrix $A^{3}=A A A$ should be invertible as well. However $A^{3}=O$ is singular.

Problem 2. Let A be a square matrix such that $A^{3}=0$.
(ii) Prove that the matrix $A+I$ is invertible.

It is enough to show that the equation $(A+I) \mathbf{x}=\mathbf{0}$ (where \mathbf{x} and $\mathbf{0}$ are column vectors) has a unique solution $\mathbf{x}=\mathbf{0}$. Indeed, $(A+I) \mathrm{x}=\mathbf{0} \Longrightarrow A \mathrm{x}+I \mathrm{x}=\mathbf{0} \Longrightarrow A \mathrm{x}=-\mathrm{x}$. Then $A^{2} \mathbf{x}=A(A \mathbf{x})=A(-\mathbf{x})=-A \mathbf{x}=-(-\mathbf{x})=\mathbf{x}$. Further, $A^{3} \mathbf{x}=A\left(A^{2} \mathbf{x}\right)=A \mathbf{x}=-\mathbf{x}$. On the other hand, $A^{3} \mathbf{x}=O \mathbf{x}=\mathbf{0}$. Hence $-\mathbf{x}=\mathbf{0} \Longrightarrow \mathbf{x}=\mathbf{0}$.

Alternatively, we can use equalities

$$
X^{3}+Y^{3}=(X+Y)\left(X^{2}-X Y+Y^{2}\right)=\left(X^{2}-X Y+Y^{2}\right)(X+Y)
$$

which hold whenever matrices X and Y commute: $X Y=Y X$. In particular, they hold for $X=A$ and $Y=I$. We obtain

$$
(A+I)\left(A^{2}-A+I\right)=\left(A^{2}-A+I\right)(A+I)=A^{3}+I^{3}=I
$$

so that $(A+I)^{-1}=A^{2}-A+I$.

Problem 3. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of A from the 3rd row:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right|=\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 3rd row:

$$
\left|\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
0 & 0 & -1 & 0 \\
2 & 0 & 0 & 1
\end{array}\right|=(-1)\left|\begin{array}{rrr}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1
\end{array}\right| .
$$

Expand the determinant by the 3rd column:

$$
(-1)\left|\begin{array}{rrr}
1 & -2 & 1 \\
2 & 3 & 0 \\
2 & 0 & 1
\end{array}\right|=(-1)\left(\left|\begin{array}{ll}
2 & 3 \\
2 & 0
\end{array}\right|+\left|\begin{array}{rr}
1 & -2 \\
2 & 3
\end{array}\right|\right)=-1
$$

Problem 3. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(ii) Find the inverse matrix A^{-1}.

First we merge the matrix A with the identity matrix into one 4×8 matrix

$$
(A \mid I)=\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
2 & 3 & 2 & 0 & 0 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we apply elementary row operations to this matrix until the left part becomes the identity matrix.

Subtract 2 times the 1 st row from the 2 nd row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\
2 & 0 & -1 & 1 & 0 & 0 & 1 & 0 \\
2 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Subtract 2 times the 1st row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1\end{array}\right)$
Subtract 2 times the 1st row from the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & 7 & -6 & -2 & -2 & 1 & 0 & 0 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$

Subtract 2 times the 4th row from the 2 nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 4 & -9 & -1 & -2 & 0 & 1 & 0 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$
Subtract the 4th row from the 3rd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 4 & -8 & -1 & -2 & 0 & 0 & 1\end{array}\right)$
Add 4 times the 2 nd row to the 4th row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\ 0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 32 & -1 & 6 & 4 & 0 & -7\end{array}\right)$

Add 32 times the 3rd row to the 4th row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & -1 & 10 & 0 & 2 & 1 & 0 & -2 \\
0 & 0 & -1 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & -1 & 6 & 4 & 32 & -39
\end{array}\right)
$$

Multiply the 2 nd, the 3 rd, and the 4 th rows by -1 :

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & -10 & 0 & -2 & -1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)
$$

Subtract the 4th row from the 1st row:

$$
\left(\begin{array}{rrrr|rrrr}
1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\
0 & 1 & -10 & 0 & -2 & -1 & 0 & 2 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)
$$

Add 10 times the 3rd row to the 2nd row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 4 & 0 & 7 & 4 & 32 & -39 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39\end{array}\right)$
Subtract 4 times the 3rd row from the 1st row:
$\left(\begin{array}{rrrr|rrrr}1 & -2 & 0 & 0 & 7 & 4 & 36 & -43 \\ 0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 & -6 & -4 & -32 & 39\end{array}\right)$
Add 2 times the 2nd row to the 1st row:

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)
$$

$$
\left(\begin{array}{llll|rrrr}
1 & 0 & 0 & 0 & 3 & 2 & 16 & -19 \\
0 & 1 & 0 & 0 & -2 & -1 & -10 & 12 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 1 & -6 & -4 & -32 & 39
\end{array}\right)=\left(I \mid A^{-1}\right)
$$

Finally the left part of our 4×8 matrix is transformed into the identity matrix. Therefore the current right part is the inverse matrix of A. Thus

$$
A^{-1}=\left(\begin{array}{rrrr}
1 & -2 & 4 & 1 \\
2 & 3 & 2 & 0 \\
2 & 0 & -1 & 1 \\
2 & 0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{rrrr}
3 & 2 & 16 & -19 \\
-2 & -1 & -10 & 12 \\
0 & 0 & -1 & 1 \\
-6 & -4 & -32 & 39
\end{array}\right) .
$$

Problem 3. Let $A=\left(\begin{array}{rrrr}1 & -2 & 4 & 1 \\ 2 & 3 & 2 & 0 \\ 2 & 0 & -1 & 1 \\ 2 & 0 & 0 & 1\end{array}\right)$.
(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity matrix using elementary row operations. These included no row exchanges and three row multiplications, each time by -1 .

It follows that $\operatorname{det} I=(-1)^{3} \operatorname{det} A$.
$\Longrightarrow \operatorname{det} A=-\operatorname{det} I=-1$.

Problem 4. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(i) The set S_{1} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x y z=0$.
$(0,0,0) \in S_{1} \Longrightarrow S_{1}$ is not empty.
$x y z=0 \Longrightarrow(r x)(r y)(r z)=r^{3} x y z=0$.
That is, $\mathbf{v}=(x, y, z) \in S_{1} \Longrightarrow r \mathbf{v}=(r x, r y, r z) \in S_{1}$. Hence S_{1} is closed under scalar multiplication.
However S_{1} is not closed under addition.
Counterexample: $(1,1,0)+(0,0,1)=(1,1,1)$.

Problem 4. Determine which of the following subsets of \mathbb{R}^{3} are subspaces. Briefly explain.

A subset of \mathbb{R}^{3} is a subspace if it is closed under addition and scalar multiplication. Besides, the subset must not be empty.
(ii) The set S_{2} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $x+y+z=0$.
$(0,0,0) \in S_{2} \Longrightarrow S_{2}$ is not empty.
$x+y+z=0 \Longrightarrow r x+r y+r z=r(x+y+z)=0$. Hence S_{2} is closed under scalar multiplication.
$x+y+z=x^{\prime}+y^{\prime}+z^{\prime}=0 \Longrightarrow$
$\left(x+x^{\prime}\right)+\left(y+y^{\prime}\right)+\left(z+z^{\prime}\right)=(x+y+z)+\left(x^{\prime}+y^{\prime}+z^{\prime}\right)=0$.
That is, $\mathbf{v}=(x, y, z), \mathbf{v}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \in S_{2}$

$$
\Longrightarrow \mathbf{v}+\mathbf{v}^{\prime}=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}\right) \in S_{2} .
$$

Hence S_{2} is closed under addition.
(iii) The set S_{3} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}+z^{2}=0$.
$y^{2}+z^{2}=0 \Longleftrightarrow y=z=0$.
Now it is easy to see that S_{3} is a nonempty set closed under addition and scalar multiplication. Alternatively, S_{3} is the solution set of a system of linear homogeneous equations, hence a subspace.
(iv) The set S_{4} of vectors $(x, y, z) \in \mathbb{R}^{3}$ such that $y^{2}-z^{2}=0$.
S_{4} is a nonempty set closed under scalar multiplication. However S_{4} is not closed under addition.
Counterexample: $(0,1,1)+(0,1,-1)=(0,2,0)$.

Problem 5. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.
(i) S_{1} : arithmetic progressions.

A sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is an arithmetic progression if $x_{n+1}=x_{n}+d$ for some $d \in \mathbb{R}$ and all n.
$\mathbf{0}=(0,0,0, \ldots)$ is an arithmetic progression with common difference $d=0$. Hence $\mathbf{0} \in S_{1} \Longrightarrow S_{1}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ are arithmetic progressions. That is, $x_{n+1}=x_{n}+d$ and $y_{n+1}=y_{n}+d^{\prime}$ for some $d, d^{\prime} \in \mathbb{R}$ and all n. Then $x_{n+1}+y_{n+1}=\left(x_{n}+d\right)+\left(y_{n}+d^{\prime}\right)=\left(x_{n}+y_{n}\right)+\left(d+d^{\prime}\right)$ for all n so that $\mathbf{x}+\mathbf{y}$ is an arithmetic progression with common difference $d+d^{\prime}$. Also, $r x_{n+1}=r x_{n}+r d$ for any scalar r and all n. Hence $r \mathbf{x}$ is an arithmetic progression with common difference $r d$.
Therefore the set S_{1} is closed under addition and scalar multiplication. Thus S_{1} is a subspace of \mathbb{R}^{∞}.

Problem 5. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.
(ii) S_{2} : geometric progressions.

A sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is a geometric progression if $x_{n+1}=x_{n} q$ for some $q \neq 0$ and all n.
$\mathbf{0}=(0,0,0, \ldots)$ is a geometric progression with common ratio $q=1$. Hence $\mathbf{0} \in S_{2} \Longrightarrow S_{2}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is a geometric progression with common ratio q. Then $r x_{n+1}=r\left(x_{n} q\right)=\left(r x_{n}\right) q$ for any scalar r and all n. Hence $r \mathbf{x}$ is also a geometric progression with the same common ratio q. Therefore the set S_{2} is closed under scalar multiplication.
However S_{2} is not closed under addition. Counterexample: $(1,1,1, \ldots)+\left(2,4,8, \ldots, 2^{n}, \ldots\right)=\left(3,5,9, \ldots, 2^{n}+1, \ldots\right)$.
Thus S_{2} is not a subspace of \mathbb{R}^{∞}.

Problem 5. Determine which of the following subsets of \mathbb{R}^{∞} are subspaces. Briefly explain.
(iii) S_{3} : square-summable sequences.

A sequence $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ is called square-summable if the series $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}$ converges.
For $\mathbf{0}=(0,0,0, \ldots)$, we have $\sum_{n=1}^{\infty}|0|^{2}=0<\infty$. Hence
$\mathbf{0} \in S_{3} \Longrightarrow S_{3}$ is not empty.
Suppose $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, \ldots\right)$ are both square-summable. Using the inequality $(a+b)^{2} \leq 2 a^{2}+2 b^{2}$, we obtain $\left|x_{n}+y_{n}\right|^{2} \leq 2\left|x_{n}\right|^{2}+2\left|y_{n}\right|^{2}$ for all n. Hence

$$
\sum_{n=1}^{\infty}\left|x_{n}+y_{n}\right|^{2} \leq 2 \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}+2 \sum_{n=1}^{\infty}\left|y_{n}\right|^{2}<\infty
$$

so that $\mathbf{x}+\mathbf{y} \in S_{3}$. Also, $\sum_{n=1}^{\infty}\left|r x_{n}\right|^{2}=|r|^{2} \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$ for any scalar r so that $r \mathbf{x} \in S_{3}$.
Therefore the set S_{3} is closed under addition and scalar multiplication. Thus S_{3} is a subspace of \mathbb{R}^{∞}.

Problem 7. Let V denote the solution set of a system $\left\{\begin{array}{l}x_{2}+2 x_{3}+3 x_{4}=0, \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 .\end{array}\right.$
Find a basis for this subspace of \mathbb{R}^{4}.
To find a basis, we need to solve the system. To this end, we subtract 2 times the 1st equation from the $2 n d$ one, then switch the equations:

$$
\left\{\begin{array} { l }
{ x _ { 1 } - x _ { 3 } - 2 x _ { 4 } = 0 } \\
{ x _ { 2 } + 2 x _ { 3 } + 3 x _ { 4 } = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{1}=x_{3}+2 x_{4} \\
x_{2}=-2 x_{3}-3 x_{4}
\end{array}\right.\right.
$$

x_{3} and x_{4} are free variables. General solution:

$$
\left\{\begin{array}{l}
x_{1}=t+2 s \\
x_{2}=-2 t-3 s \\
x_{3}=t \\
x_{4}=s
\end{array}\right.
$$

$$
(t, s \in \mathbb{R})
$$

In vector form, $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=t(1,-2,1,0)+s(2,-3,0,1)$. Hence vectors $(1,-2,1,0)$ and $(2,-3,0,1)$ span V. Since they are also linearly independent, they form a basis for V.

Problem 7. Let V denote the solution set of a system
$\left\{\begin{array}{l}x_{2}+2 x_{3}+3 x_{4}=0, \\ x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=0 .\end{array}\right.$
Find a basis for this subspace of \mathbb{R}^{4}, then extend it to a basis for \mathbb{R}^{4}.

Vectors $\mathbf{v}_{1}=(1,-2,1,0)$ and $\mathbf{v}_{2}=(2,-3,0,1)$ form a basis for V. To extend them to a basis for \mathbb{R}^{4}, we need to add two vectors \mathbf{v}_{3} and \mathbf{v}_{4} so that four vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$ are linearly independent. We can choose new vectors from the standard basis (or any other spanning set for \mathbb{R}^{4}). For example, we can add $\mathbf{e}_{1}=(1,0,0,0)$ and $\mathbf{e}_{2}=(0,1,0,0)$. To verify linear independence of vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{e}_{1}, \mathbf{e}_{2}$, we check that the matrix whose columns are these vectors is invertible. Indeed,
$\left|\begin{array}{rrrr}1 & 2 & 1 & 0 \\ -2 & -3 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right|=-\left|\begin{array}{rrrr}1 & 2 & 1 & 0 \\ 0 & -3 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0\end{array}\right|=\left|\begin{array}{rrrr}1 & 0 & 1 & 2 \\ 0 & 1 & -2 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right|=1 \neq 0$.

Problem 6. Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$ and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

The functions f_{1}, f_{2}, f_{3} are linearly independent whenever the Wronskian $W\left[f_{1}, f_{2}, f_{3}\right]$ is not identically zero.

$$
\begin{aligned}
& W\left[f_{1}, f_{2}, f_{3}\right](x)=\left|\begin{array}{ccc}
f_{1}(x) & f_{2}(x) & f_{3}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & f_{3}^{\prime}(x) \\
f_{1}^{\prime \prime}(x) & f_{2}^{\prime \prime}(x) & f_{3}^{\prime \prime}(x)
\end{array}\right|=\left|\begin{array}{ccc}
x & x e^{x} & e^{-x} \\
1 & e^{x}+x e^{x} & -e^{-x} \\
0 & 2 e^{x}+x e^{x} & e^{-x}
\end{array}\right| \\
& =e^{-x}\left|\begin{array}{ccc}
x & x e^{x} & 1 \\
1 & e^{x}+x e^{x} & -1 \\
0 & 2 e^{x}+x e^{x} & 1
\end{array}\right|=\left|\begin{array}{ccr}
x & x & 1 \\
1 & 1+x & -1 \\
0 & 2+x & 1
\end{array}\right| \\
& \quad=x\left|\begin{array}{cr}
1+x & -1 \\
2+x & 1
\end{array}\right|-\left|\begin{array}{cc}
x & 1 \\
2+x & 1
\end{array}\right|=x(2 x+3)+2=2 x^{2}+3 x+2 .
\end{aligned}
$$

The polynomial $2 x^{2}+3 x+2$ is never zero.

Problem 6. Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$ and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $a f_{1}(x)+b f_{2}(x)+c f_{3}(x)=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.
Let us differentiate this identity:

$$
\begin{gathered}
a x+b x e^{x}+c e^{-x}=0, \\
a+b e^{x}+b x e^{x}-c e^{-x}=0, \\
2 b e^{x}+b x e^{x}+c e^{-x}=0, \\
3 b e^{x}+b x e^{x}-c e^{-x}=0, \\
4 b e^{x}+b x e^{x}+c e^{-x}=0 .
\end{gathered}
$$

(the 5th identity)-(the 3rd identity): $2 b e^{x}=0 \Longrightarrow b=0$.
Substitute $b=0$ in the 3rd identity: $c e^{-x}=0 \Longrightarrow c=0$.
Substitute $b=c=0$ in the 2nd identity: $a=0$.

Problem 6. Show that the functions $f_{1}(x)=x, f_{2}(x)=x e^{x}$ and $f_{3}(x)=e^{-x}$ are linearly independent in the vector space $C^{\infty}(\mathbb{R})$.

Alternative solution: Suppose that $a x+b x e^{x}+c e^{-x}=0$ for all $x \in \mathbb{R}$, where a, b, c are constants. We have to show that $a=b=c=0$.

For any $x \neq 0$ divide both sides of the identity by $x e^{x}$:

$$
a e^{-x}+b+c x^{-1} e^{-2 x}=0 .
$$

The left-hand side approaches b as $x \rightarrow+\infty . \quad \Longrightarrow b=0$ Now $a x+c e^{-x}=0$ for all $x \in \mathbb{R}$. For any $x \neq 0$ divide both sides of the identity by x :

$$
a+c x^{-1} e^{-x}=0 .
$$

The left-hand side approaches a as $x \rightarrow+\infty$.

$$
\Longrightarrow a=0
$$

Now $c e^{-x}=0 \Longrightarrow c=0$.

