
MATH 323

Linear Algebra

Lecture 13:
Review for Test 1.



Topics for Test 1

Part I: Elementary linear algebra (Leon/de Pillis

1.1–1.5, 2.1–2.2)

• Systems of linear equations: elementary
operations, Gaussian elimination, back substitution.

• Matrix of coefficients and augmented matrix.
Elementary row operations, row echelon form and
reduced row echelon form.

• Matrix algebra. Inverse matrix.

• Determinants: explicit formulas for 2×2 and
3×3 matrices, row and column expansions,

elementary row and column operations.



Topics for Test 1

Part II: Abstract linear algebra (Leon/de Pillis

3.1–3.4)

• Definition of a vector space.

• Basic examples of vector spaces.

• Basic properties of vector spaces.

• Subspaces of vector spaces.

• Span, spanning set.

• Linear independence.

• Basis and dimension.



Sample problems for Test 1

Problem 1 Find a quadratic polynomial p(x) such that
p(1) = 1, p(2) = 3, and p(3) = 7.

Problem 2 Let A be a square matrix such that A3 = O.

(i) Prove that the matrix A is not invertible.
(ii) Prove that the matrix A+ I is invertible.

Problem 3 Let A =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









.

(i) Evaluate the determinant of the matrix A.
(ii) Find the inverse matrix A−1.



Sample problems for Test 1

Problem 4 Determine which of the following subsets of R3 are
subspaces. Briefly explain.

(i) The set S1 of vectors (x , y , z) ∈ R
3 such that xyz = 0.

(ii) The set S2 of vectors (x , y , z) ∈ R
3 such that x + y + z = 0.

(iii) The set S3 of vectors (x , y , z) ∈ R
3 such that y2 + z2 = 0.

(iv) The set S4 of vectors (x , y , z) ∈ R
3 such that y2 − z2 = 0.

Problem 5 Determine which of the following subsets of R∞ are
subspaces. Briefly explain.

(i) The set S1 of all arithmetic progressions.
(ii) The set S2 of all geometric progressions.
(iii) The set S3 of all square-summable sequences, i.e., sequences
(x1, x2, x3, . . . ) such that

∑

∞

n=1
|xn|

2 < ∞.



Sample problems for Test 1

Problem 6 Show that the functions f1(x) = x , f2(x) = xex ,
and f3(x) = e−x are linearly independent in the vector space
C∞(R).

Problem 7 Let V denote the solution set of a system
{

x2 + 2x3 + 3x4 = 0,
x1 + 2x2 + 3x3 + 4x4 = 0.

Find a basis for this subspace of R4, then extend it to a basis
for R4.



Problem 1. Find a quadratic polynomial p(x) such that
p(1) = 1, p(2) = 3, and p(3) = 7.

Let p(x) = a + bx + cx2. Then p(1) = a + b + c,
p(2) = a + 2b + 4c, and p(3) = a + 3b + 9c.

The coefficients a, b, and c have to be chosen so that






a + b + c = 1,
a + 2b + 4c = 3,
a + 3b + 9c = 7.

We solve this system of linear equations using elementary
operations:







a + b + c = 1
a + 2b + 4c = 3
a + 3b + 9c = 7

⇐⇒







a + b + c = 1
b + 3c = 2
a + 3b + 9c = 7



⇐⇒







a + b + c = 1
b + 3c = 2
a + 3b + 9c = 7

⇐⇒







a + b + c = 1
b + 3c = 2
2b + 8c = 6

⇐⇒







a + b + c = 1
b + 3c = 2
b + 4c = 3

⇐⇒







a + b + c = 1
b + 3c = 2
c = 1

⇐⇒







a + b + c = 1
b = −1
c = 1

⇐⇒







a = 1
b = −1
c = 1

Thus the desired polynomial is p(x) = x2 − x + 1.



Problem 2. Let A be a square matrix such that
A3 = O.

(i) Prove that the matrix A is not invertible.

The proof is by contradiction. Assume that A is invertible.
Since any product of invertible matrices is also invertible, the
matrix A3 = AAA should be invertible as well. However
A3 = O is singular.



Problem 2. Let A be a square matrix such that
A3 = O.

(ii) Prove that the matrix A+ I is invertible.

It is enough to show that the equation (A+ I )x = 0 (where x
and 0 are column vectors) has a unique solution x = 0.
Indeed, (A+ I )x = 0 =⇒ Ax+ Ix = 0 =⇒ Ax = −x.
Then A2x = A(Ax) = A(−x) = −Ax = −(−x) = x.
Further, A3x = A(A2x) = Ax = −x. On the other hand,
A3x = Ox = 0. Hence −x = 0 =⇒ x = 0.

Alternatively, we can use equalities

X 3+Y 3 = (X+Y )(X 2−XY +Y 2) = (X 2−XY +Y 2)(X+Y ),

which hold whenever matrices X and Y commute: XY = YX .
In particular, they hold for X = A and Y = I . We obtain

(A+ I )(A2 − A+ I ) = (A2 − A+ I )(A+ I ) = A3 + I 3 = I

so that (A+ I )−1 = A2 − A+ I .



Problem 3. Let A =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









.

(i) Evaluate the determinant of the matrix A.

Subtract the 4th row of A from the 3rd row:
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2 0 0 1
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1 −2 4 1
2 3 2 0
0 0 −1 0
2 0 0 1
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Expand the determinant by the 3rd row:
∣
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1 −2 4 1
2 3 2 0
0 0 −1 0
2 0 0 1
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∣

∣

∣

∣
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2 0 1
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Expand the determinant by the 3rd column:
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2 3 0
2 0 1
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2 3
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= −1.



Problem 3. Let A =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









.

(ii) Find the inverse matrix A−1.

First we merge the matrix A with the identity matrix into one
4× 8 matrix

(A | I ) =









1 −2 4 1 1 0 0 0
2 3 2 0 0 1 0 0
2 0 −1 1 0 0 1 0
2 0 0 1 0 0 0 1









.

Then we apply elementary row operations to this matrix until
the left part becomes the identity matrix.



Subtract 2 times the 1st row from the 2nd row:








1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
2 0 −1 1 0 0 1 0
2 0 0 1 0 0 0 1









Subtract 2 times the 1st row from the 3rd row:








1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
0 4 −9 −1 −2 0 1 0
2 0 0 1 0 0 0 1









Subtract 2 times the 1st row from the 4th row:








1 −2 4 1 1 0 0 0
0 7 −6 −2 −2 1 0 0
0 4 −9 −1 −2 0 1 0
0 4 −8 −1 −2 0 0 1











Subtract 2 times the 4th row from the 2nd row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 4 −9 −1 −2 0 1 0
0 4 −8 −1 −2 0 0 1









Subtract the 4th row from the 3rd row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 4 −8 −1 −2 0 0 1









Add 4 times the 2nd row to the 4th row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 0 32 −1 6 4 0 −7











Add 32 times the 3rd row to the 4th row:








1 −2 4 1 1 0 0 0
0 −1 10 0 2 1 0 −2
0 0 −1 0 0 0 1 −1
0 0 0 −1 6 4 32 −39









Multiply the 2nd, the 3rd, and the 4th rows by −1:








1 −2 4 1 1 0 0 0
0 1 −10 0 −2 −1 0 2
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39









Subtract the 4th row from the 1st row:








1 −2 4 0 7 4 32 −39
0 1 −10 0 −2 −1 0 2
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39











Add 10 times the 3rd row to the 2nd row:








1 −2 4 0 7 4 32 −39
0 1 0 0 −2 −1 −10 12
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39









Subtract 4 times the 3rd row from the 1st row:








1 −2 0 0 7 4 36 −43
0 1 0 0 −2 −1 −10 12
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39









Add 2 times the 2nd row to the 1st row:








1 0 0 0 3 2 16 −19
0 1 0 0 −2 −1 −10 12
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39



















1 0 0 0 3 2 16 −19
0 1 0 0 −2 −1 −10 12
0 0 1 0 0 0 −1 1
0 0 0 1 −6 −4 −32 39









= (I |A−1)

Finally the left part of our 4× 8 matrix is transformed into the
identity matrix. Therefore the current right part is the inverse
matrix of A. Thus

A−1 =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









−1

=









3 2 16 −19
−2 −1 −10 12
0 0 −1 1

−6 −4 −32 39









.



Problem 3. Let A =









1 −2 4 1
2 3 2 0
2 0 −1 1
2 0 0 1









.

(i) Evaluate the determinant of the matrix A.

Alternative solution: We have transformed A into the identity
matrix using elementary row operations. These included no
row exchanges and three row multiplications, each time by −1.

It follows that det I = (−1)3 detA.
=⇒ detA = − det I = −1.



Problem 4. Determine which of the following
subsets of R3 are subspaces. Briefly explain.

A subset of R3 is a subspace if it is closed under addition and
scalar multiplication. Besides, the subset must not be empty.

(i) The set S1 of vectors (x , y , z) ∈ R
3 such that

xyz = 0.

(0, 0, 0) ∈ S1 =⇒ S1 is not empty.

xyz = 0 =⇒ (rx)(ry )(rz) = r 3xyz = 0.
That is, v = (x , y , z) ∈ S1 =⇒ rv = (rx , ry , rz) ∈ S1.
Hence S1 is closed under scalar multiplication.

However S1 is not closed under addition.
Counterexample: (1, 1, 0) + (0, 0, 1) = (1, 1, 1).



Problem 4. Determine which of the following

subsets of R3 are subspaces. Briefly explain.

A subset of R3 is a subspace if it is closed under addition and
scalar multiplication. Besides, the subset must not be empty.

(ii) The set S2 of vectors (x , y , z) ∈ R
3 such that

x + y + z = 0.

(0, 0, 0) ∈ S2 =⇒ S2 is not empty.

x + y + z = 0 =⇒ rx + ry + rz = r(x + y + z) = 0.
Hence S2 is closed under scalar multiplication.

x + y + z = x ′ + y ′ + z ′ = 0 =⇒
(x + x ′)+ (y + y ′)+ (z + z ′) = (x + y + z)+ (x ′+ y ′+ z ′) = 0.
That is, v = (x , y , z), v′ = (x ′

, y ′
, z ′) ∈ S2

=⇒ v + v′ = (x + x ′
, y + y ′

, z + z ′) ∈ S2.
Hence S2 is closed under addition.



(iii) The set S3 of vectors (x , y , z) ∈ R
3 such that

y 2 + z2 = 0.

y 2 + z2 = 0 ⇐⇒ y = z = 0.

Now it is easy to see that S3 is a nonempty set closed under
addition and scalar multiplication. Alternatively, S3 is the
solution set of a system of linear homogeneous equations,
hence a subspace.

(iv) The set S4 of vectors (x , y , z) ∈ R
3 such that

y 2 − z2 = 0.

S4 is a nonempty set closed under scalar multiplication.
However S4 is not closed under addition.
Counterexample: (0, 1, 1) + (0, 1,−1) = (0, 2, 0).



Problem 5. Determine which of the following

subsets of R∞ are subspaces. Briefly explain.

(i) S1: arithmetic progressions.

A sequence x = (x1, x2, x3, . . . ) is an arithmetic progression if
xn+1 = xn + d for some d ∈ R and all n.

0 = (0, 0, 0, . . . ) is an arithmetic progression with common
difference d = 0. Hence 0 ∈ S1 =⇒ S1 is not empty.

Suppose x = (x1, x2, x3, . . . ) and y = (y1, y2, y3, . . . ) are
arithmetic progressions. That is, xn+1 = xn + d and
yn+1 = yn + d ′ for some d , d ′ ∈ R and all n. Then
xn+1 + yn+1 = (xn + d) + (yn + d ′) = (xn + yn) + (d + d ′) for
all n so that x+ y is an arithmetic progression with common
difference d + d ′. Also, rxn+1 = rxn + rd for any scalar r and
all n. Hence rx is an arithmetic progression with common
difference rd .

Therefore the set S1 is closed under addition and scalar
multiplication. Thus S1 is a subspace of R∞.



Problem 5. Determine which of the following

subsets of R∞ are subspaces. Briefly explain.

(ii) S2: geometric progressions.

A sequence x = (x1, x2, x3, . . . ) is a geometric progression if
xn+1 = xnq for some q 6= 0 and all n.

0 = (0, 0, 0, . . . ) is a geometric progression with common
ratio q = 1. Hence 0 ∈ S2 =⇒ S2 is not empty.

Suppose x = (x1, x2, x3, . . . ) is a geometric progression with
common ratio q. Then rxn+1 = r(xnq) = (rxn)q for any
scalar r and all n. Hence rx is also a geometric progression
with the same common ratio q. Therefore the set S2 is closed
under scalar multiplication.

However S2 is not closed under addition. Counterexample:
(1, 1, 1, . . . ) + (2, 4, 8, . . . , 2n, . . . ) = (3, 5, 9, . . . , 2n+1, . . . ).

Thus S2 is not a subspace of R∞.



Problem 5. Determine which of the following

subsets of R∞ are subspaces. Briefly explain.

(iii) S3: square-summable sequences.

A sequence x = (x1, x2, x3, . . . ) is called square-summable if
the series

∑

∞

n=1
|xn|

2 converges.

For 0 = (0, 0, 0, . . . ), we have
∑

∞

n=1
|0|2 = 0 < ∞. Hence

0 ∈ S3 =⇒ S3 is not empty.

Suppose x = (x1, x2, x3, . . . ) and y = (y1, y2, y3, . . . ) are both
square-summable. Using the inequality (a+ b)2 ≤ 2a2 + 2b2,
we obtain |xn + yn|

2 ≤ 2|xn|
2 + 2|yn|

2 for all n. Hence
∑

∞

n=1
|xn + yn|

2 ≤ 2
∑

∞

n=1
|xn|

2 + 2
∑

∞

n=1
|yn|

2
< ∞

so that x+ y ∈ S3. Also,
∑

∞

n=1
|rxn|

2 = |r |2
∑

∞

n=1
|xn|

2
< ∞

for any scalar r so that rx ∈ S3.

Therefore the set S3 is closed under addition and scalar
multiplication. Thus S3 is a subspace of R∞.



Problem 7. Let V denote the solution set of a system
{

x2 + 2x3 + 3x4 = 0,
x1 + 2x2 + 3x3 + 4x4 = 0.

Find a basis for this subspace of R4.

To find a basis, we need to solve the system. To this end, we
subtract 2 times the 1st equation from the 2nd one, then
switch the equations:

{

x1 − x3 − 2x4 = 0
x2 + 2x3 + 3x4 = 0

⇐⇒

{

x1 = x3 + 2x4
x2 = −2x3 − 3x4

x3 and x4 are free variables. General solution:














x1 = t + 2s
x2 = −2t − 3s
x3 = t
x4 = s

(t, s ∈ R)

In vector form, (x1, x2, x3, x4) = t(1,−2, 1, 0) + s(2,−3, 0, 1).
Hence vectors (1,−2, 1, 0) and (2,−3, 0, 1) span V . Since
they are also linearly independent, they form a basis for V .



Problem 7. Let V denote the solution set of a system
{

x2 + 2x3 + 3x4 = 0,
x1 + 2x2 + 3x3 + 4x4 = 0.

Find a basis for this subspace of R4, then extend it to a basis
for R4.

Vectors v1 = (1,−2, 1, 0) and v2 = (2,−3, 0, 1) form a basis
for V . To extend them to a basis for R4, we need to add two
vectors v3 and v4 so that four vectors v1, v2, v3, v4 are linearly
independent. We can choose new vectors from the standard
basis (or any other spanning set for R4). For example, we can
add e1 = (1, 0, 0, 0) and e2 = (0, 1, 0, 0). To verify linear
independence of vectors v1, v2, e1, e2, we check that the
matrix whose columns are these vectors is invertible. Indeed,
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Problem 6. Show that the functions f1(x) = x , f2(x) = xex

and f3(x) = e−x are linearly independent in the vector space
C∞(R).

The functions f1, f2, f3 are linearly independent whenever the
Wronskian W [f1, f2, f3] is not identically zero.

W [f1, f2, f3](x) =

∣
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f1(x) f2(x) f3(x)
f ′1(x) f ′2(x) f ′3(x)
f ′′1 (x) f ′′2 (x) f ′′3 (x)
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x xex e−x

1 ex+xex −e−x

0 2ex+xex e−x
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0 2ex+xex 1

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x x 1
1 1+x −1
0 2+x 1
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∣
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∣
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∣

∣

∣

∣

= x(2x+3)+2 = 2x2+3x+2.

The polynomial 2x2 + 3x + 2 is never zero.



Problem 6. Show that the functions f1(x) = x , f2(x) = xex

and f3(x) = e−x are linearly independent in the vector space
C∞(R).

Alternative solution: Suppose that af1(x)+bf2(x)+cf3(x) = 0
for all x ∈ R, where a, b, c are constants. We have to show
that a = b = c = 0.

Let us differentiate this identity:

ax + bxex + ce−x = 0,

a + bex + bxex − ce−x = 0,

2bex + bxex + ce−x = 0,

3bex + bxex − ce−x = 0,

4bex + bxex + ce−x = 0.

(the 5th identity)−(the 3rd identity): 2bex = 0 =⇒ b = 0.

Substitute b = 0 in the 3rd identity: ce−x = 0 =⇒ c = 0.

Substitute b = c = 0 in the 2nd identity: a = 0.



Problem 6. Show that the functions f1(x) = x , f2(x) = xex

and f3(x) = e−x are linearly independent in the vector space
C∞(R).

Alternative solution: Suppose that ax + bxex + ce−x = 0 for
all x ∈ R, where a, b, c are constants. We have to show that
a = b = c = 0.

For any x 6= 0 divide both sides of the identity by xex :

ae−x + b + cx−1e−2x = 0.

The left-hand side approaches b as x → +∞. =⇒ b = 0

Now ax + ce−x = 0 for all x ∈ R. For any x 6= 0 divide
both sides of the identity by x :

a + cx−1e−x = 0.

The left-hand side approaches a as x → +∞. =⇒ a = 0

Now ce−x = 0 =⇒ c = 0.


