MATH 323
 Linear Algebra
 Lecture 14:
 Rank of a matrix (continued). Basis and coordinates.

Row space of a matrix

Definition. The row space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{n} spanned by rows of A.

The dimension of the row space is called the rank of the matrix A.

Theorem 1 The rank of a matrix A is the maximal number of linearly independent rows in A.

Theorem 2 Elementary row operations do not change the row space of a matrix.
Theorem 3 If a matrix A is in row echelon form, then the nonzero rows of A are linearly independent.
Corollary The rank of a matrix is equal to the number of nonzero rows in its row echelon form.

Column space of a matrix

Definition. The column space of an $m \times n$ matrix A is the subspace of \mathbb{R}^{m} spanned by columns of A.

Theorem 1 The column space of a matrix A coincides with the row space of the transpose matrix A^{T}.
Theorem 2 Elementary row operations do not change linear relations between columns of a matrix.

Theorem 3 Elementary row operations do not change the dimension of the column space of a matrix (however they can change the column space).
Theorem 4 If a matrix is in row echelon form, then the columns with leading entries form a basis for the column space.
Corollary For any matrix, the row space and the column space have the same dimension.

Problem. Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The column space of A coincides with the row space of A^{T}. To find a basis, we convert A^{T} to row echelon form:
$A^{T}=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 1 & 1 & 3 & 1 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
Vectors $(1,0,2,1),(0,1,1,0)$, and ($0,0,0,1$) form a basis for the column space of A.

Problem. Find a basis for the column space of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
2 & 3 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Alternative solution: We already know from a recent lecture that the rank of A is 3 . It follows that the columns of A are linearly independent.
Therefore these columns form a basis for the column space.

Problem. Let V be a vector space spanned by vectors $\mathbf{w}_{1}=(1,1,0), \mathbf{w}_{2}=(0,1,1), \mathbf{w}_{3}=(2,3,1)$, and $\mathbf{w}_{4}=(1,1,1)$. Pare this spanning set to a basis for V.

Alternative solution: The vector space V is the column space of a matrix

$$
B=\left(\begin{array}{llll}
1 & 0 & 2 & 1 \\
1 & 1 & 3 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) .
$$

The row echelon form of B is $C=\left(\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$.
Columns of C with leading entries (1st, 2nd, and 4th) form a basis for the column space of C. It follows that the corresponding columns of B (i.e., 1st, 2nd, and 4th) form a basis for the column space of B.
Thus $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{4}\right\}$ is a basis for V.

Nullspace of a matrix

Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix.
Definition. The nullspace of the matrix A, denoted $N(A)$, is the set of all n-dimensional column vectors \mathbf{x} such that $A \mathbf{x}=\mathbf{0}$.

$$
\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

The nullspace $N(A)$ is the solution set of a system of linear homogeneous equations (with A as the coefficient matrix).

Theorem $N(A)$ is a subspace of the vector space \mathbb{R}^{n}.
Definition. The dimension of the nullspace $N(A)$ is called the nullity of the matrix A.

rank + nullity

Theorem The rank of a matrix A plus the nullity of A equals the number of columns in A.

Sketch of the proof: The rank of A equals the number of nonzero rows in the row echelon form, which equals the number of leading entries.
The nullity of A equals the number of free variables in the corresponding homogeneous system, which equals the number of columns without leading entries in the row echelon form.

Notice that the number of leading entries in the row echelon form equals the number of columns with leading entries. Consequently, rank+nullity is the number of all columns in the matrix A.

Problem. Find the nullity of the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 3 & 4 & 5
\end{array}\right)
$$

Clearly, the rows of A are linearly independent.
Therefore the rank of A is 2 . Since

$$
(\text { rank of } A)+(\text { nullity of } A)=4
$$

it follows that the nullity of A is 2 .

Basis and dimension

Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

Theorem Any vector space V has a basis. If V has a finite basis, then all bases for V are finite and have the same number of elements (called the dimension of V).

Example. Vectors $\mathbf{e}_{1}=(1,0,0, \ldots, 0,0)$, $\mathbf{e}_{2}=(0,1,0, \ldots, 0,0), \ldots, \mathbf{e}_{n}=(0,0,0, \ldots, 0,1)$ form a basis for \mathbb{R}^{n} (called standard) since

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+\cdots+x_{n} \mathbf{e}_{n}
$$

Basis and coordinates

If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ is a basis for a vector space V, then any vector $\mathbf{v} \in V$ has a unique representation

$$
\mathbf{v}=x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+\cdots+x_{n} \mathbf{v}_{n}
$$

where $x_{i} \in \mathbb{R}$. The coefficients $x_{1}, x_{2}, \ldots, x_{n}$ are called the coordinates of \mathbf{v} with respect to the ordered basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

The mapping
vector $\mathbf{v} \mapsto$ its coordinates $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
is a one-to-one correspondence between V and \mathbb{R}^{n}.
This correspondence respects linear operations in V and in \mathbb{R}^{n}.

Examples. - Coordinates of a vector
$\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ relative to the standard basis $\mathbf{e}_{1}=(1,0, \ldots, 0,0), \mathbf{e}_{2}=(0,1, \ldots, 0,0), \ldots$, $\mathbf{e}_{n}=(0,0, \ldots, 0,1)$ are $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

- Coordinates of a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathcal{M}_{2,2}(\mathbb{R})$ relative to the basis $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$, $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ are (a, c, b, d).
- Coordinates of a polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1} \in \mathcal{P}_{n}$ relative to the basis $1, x, x^{2}, \ldots, x^{n-1}$ are $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$.

Weird vector space

Consider the set $V=\mathbb{R}_{+}$of positive numbers with a nonstandard addition and scalar multiplication:

$$
\begin{array}{|l|}
\hline x \oplus y=x y \\
\hline r \odot x=x^{r}
\end{array} \text { for any } x, y \in \mathbb{R}_{+} .
$$

This is an example of a vector space.
The zero vector in V is the number 1 . To build a basis for V, we can begin with any number $v \in V$ different from 1 . Let's take $v=2$. The span $\operatorname{Span}(2)$ consists of all numbers of the form $r \odot 2=2^{r}, r \in \mathbb{R}$. It is the entire space V. Hence $\{2\}$ is a basis for V so that $\operatorname{dim} V=1$.
The coordinate mapping $f: V \rightarrow \mathbb{R}$ associated to this basis is given by $f\left(2^{r}\right)=r$ for all $r \in \mathbb{R}$. Equivalently, $f(x)=\log _{2} x$, $x \in V$. Notice that $\log _{2}(x \oplus y)=\log _{2} x+\log _{2} y$ and $\log _{2}(r \odot x)=r \log _{2} x$.

Vectors $\mathbf{u}_{1}=(3,1)$ and $\mathbf{u}_{2}=(2,1)$ form a basis for \mathbb{R}^{2}.
Problem 1. Find coordinates of the vector $\mathbf{v}=(7,4)$ with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$.

The desired coordinates x, y satisfy
$\mathbf{v}=x \mathbf{u}_{1}+y \mathbf{u}_{2} \Longleftrightarrow\left\{\begin{array}{l}3 x+2 y=7 \\ x+y=4\end{array} \Longleftrightarrow\left\{\begin{array}{l}x=-1 \\ y=5\end{array}\right.\right.$
Problem 2. Find the vector \mathbf{w} whose coordinates with respect to the basis $\mathbf{u}_{1}, \mathbf{u}_{2}$ are (7,4).
$\mathbf{w}=7 \mathbf{u}_{1}+4 \mathbf{u}_{2}=7(3,1)+4(2,1)=(29,11)$

Change of coordinates

Given a vector $\mathbf{v} \in \mathbb{R}^{2}$, let (x, y) be its standard coordinates, i.e., coordinates with respect to the standard basis $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$, and let (x^{\prime}, y^{\prime}) be its coordinates with respect to the basis $\mathbf{u}_{1}=(3,1), \quad \mathbf{u}_{2}=(2,1)$.

Problem. Find a relation between (x, y) and $\left(x^{\prime}, y^{\prime}\right)$. By definition, $\mathbf{v}=x \mathbf{e}_{1}+y \mathbf{e}_{2}=x^{\prime} \mathbf{u}_{1}+y^{\prime} \mathbf{u}_{2}$. In standard coordinates,

$$
\begin{aligned}
\binom{x}{y} & =x^{\prime}\binom{3}{1}+y^{\prime}\binom{2}{1}=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)\binom{x^{\prime}}{y^{\prime}} \\
\Longrightarrow\binom{x^{\prime}}{y^{\prime}} & =\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right)^{-1}\binom{x}{y}=\left(\begin{array}{rr}
1 & -2 \\
-1 & 3
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

