MATH 323
Linear Algebra

Lecture 16:
Range and kernel.
General linear equations.
Multiplication by a matrix as a linear map.



Linear transformation

Definition. Given vector spaces V; and V>, a
mapping L: Vi — V5 is linear if

L(x +y) = L(x) + L(y),
L(rx) = rL(x)
forany x,y € Vi and r € R.

Basic properties of linear mappings:
o L(nvi+ -+ nvy)=nl(v)+ -+ rnl(vg)
forall k>1, vi,...,vp € Vq, and n,...,re € R.

e [(0;) =0,, where 0; and 0, are zero vectors in
Vi and V5, respectively.

o [(—v)=—L(v) forany v e V.



Examples of linear mappings

e Scaling L:V — V, L(v) = sv, where s € R.
e Dot product with a fixed vector

(:R" =R, {(v) =v-vyg, where vy € R".

e Cross product with a fixed vector

L:R3— R3 L(v) =v xvg, where vy € R3,

e Multiplication by a fixed matrix

L:R" = R™ L(v)= Av, where Aisan mxn
matrix and all vectors are column vectors.

e Coordinate mapping

L:V —R", L(v)= coordinates of v relative to an
ordered basis vq, vy, ...,v, for the vector space V.



Linear mappings of functional vector spaces

e FEvaluation at a fixed point
(:F(R) = R, ¢(f)="f(a), where a € R.

e Multiplication by a fixed function
L: F(R) — F(R), L(f)= gf, where g € F(R).

e Differentiation D : C}(R) — C(R), D(f) = f".
e Integration over a finite interval

[ C(R) SR, ((f) = / " () dx, where
abecR, a<b. ’

e Change of the variable
L: F(R) — F(R), L(f)="fo¢, where ¢ € F(R).



Examples. M ,(R): the space of mxn matrices.

® (X! Mmyn(R) — Mn,m(R)v O‘(A) =

a(A+ B) =a(A)+«a(B) < (A+B)T =AT + BT,
a(rA) = ra(A) < (rA)T = rAT.
Hence « is linear.

o [: M272(R) — R, B(A) = det A.

10 00
Let A—(O 0) and B—(O 1).

Then A+ B = (1 0).

We have det(A) = det(B) = 0 while det(A+ B) = 1.
Hence (A + B) # B(A) + B(B) so that /3 is not linear.



Range and kernel
Let V, W be vector spaces and L: V — W be a linear map.
Definition. The range (or image) of L is the set

of all vectors w € W such that w = L(v) for some
v € V. The range of L is denoted L(V).

The kernel of L, denoted ker L, is the set of all
vectors v € V such that L(v) =0.

Theorem (i) If Vj is a subspace of V then L(V;)
is a subspace of W. (ii) If W is a subspace of W
then L~!(W;) is a subspace of V.

Corollary (i) The range of L is a subspace of W.
(ii) The kernel of L is a subspace of V.



X 10 -1 X
Example. L:R>—=R3 L|ly|=[12 -1 y
z 1 0 —1 z

The kernel ker(L) is the nullspace of the matrix.

X 1 0 —1
Lly|l=x|1]+y|2]+z]|-1
z 1 0 —1

The range L(R3) is the column space of the matrix.



X 10 -1 X
Example. L:R>—=R3 L|ly|=[12 -1 y
z 10 -1 z

The range of L is spanned by vectors (1,1, 1), (0,2,0), and
(—1,—1,-1). It follows that L(IR3) is the plane spanned by
(1,1,1) and (0,1,0).

To find ker(L), we apply row reduction to the matrix:

10 -1 1 0 -1 1 0 -1
12 -1} —-(02 0] —=({01 O
10 —1 00 O 00 O

Hence (x,y,z) € ker(L) if x —z=y =0.
It follows that ker(L) is the line spanned by (1,0,1).



More examples

o L: Mss(R) = Maa(R), L(A) = (8 (1) A

! a by (cd

cd/  \0 0)
The range of L is the subspace of matrices with the
zero second row, ker L is the same as the range

— L(L(A)) = O.

o D :Py— P, (Dp)(x) = p’(X).
p(x) = ax3+bx*+cx+d = (Dp)(x) = 3ax*+2bx+c
The range of D is P3;, ker D = P;.



Example. L: C3(R)— C(R), L(u)=u"—2u"+u.

According to the theory of differential equations, the initial
value problem

u"(x) —2u"(x) + u'(x) = g(x), xR,

u(a) = by,
v'(a) = by,
u”(a) = b2

has a unique solution for any g € C(R) and any
bo, by, by € R. It follows that L(C3(R)) = C(R).

Also, the initial data evaluation /(u) = (u(a), u'(a), u"(a)),
which is a linear mapping / : C3(R) — R3, becomes invertible
when restricted to ker(L). Hence dimker(L) = 3 since any
invertible linear transformation maps a basis to a basis.

It is easy to check that L(xe*) = L(e*) = L(1) =0.
Besides, the functions xe*, €%, and 1 are linearly independent
(use Wronskian). It follows that ker(L) = Span(xe*, e*, 1).



General linear equation

Definition. A linear equation is an equation of the form
L(x) = b,

where L:V — W is a linear mapping, b is a given vector
from W, and x is an unknown vector from V.

The range of L is the set of all vectors b € W such that the
equation L(x) = b has a solution.

The kernel of L is the solution set of the homogeneous linear
equation L(x) = 0.
Theorem If the linear equation L(x) = b is solvable and
dimker L < 0o, then the general solution is

Xo + tivy + - - A TV,

where Xq is a particular solution, vq,...,v, is a basis for the
kernel of L, and ty, ..., t, are arbitrary scalars.



x+y+z=4,
Example. {x+2y:3.
X X
1 11
. T3 2 —
L:R>— R Ly —(120)y
z z

Linear equation: L(x) =b, where b= (g)

1114 _}1 1 1] 4 _}1 0O 2| 5
1 203 01 —-1|-1 01 —-1|-1
{x—|—2z:5 {x:5—2z

<

y—z=-1 y=—-1+42z
(x,y,z)=(b—2t,—-1+t,t)=(5—-1,0)+ t(—2,1,1).



Example. u"(x) —2u"(x) + u'(x) = €

Linear operator L : C3(R) — C(R),
Lu=d"—24" 4+ U\

Linear equation: Lu = b, where b(x) = e**

We already know that functions xe*, e* and 1 form

a basis for the kernel of L. It remains to find a
particular solution.

L(e¥) = 8e?* — 2(4e*) + 2e* = 2%
Since L is a linear operator, L(% 2X) = 2%,

Particular solution: wu(x) = 5e**.

Thus the general solution is
(X) 1 e + tixe* + the* + t3.



Multiplication by a matrix as a linear map

Any mxn matrix A gives rise to a transformation
L:R" — R™ given by L(x) = Ax, where x € R”
and L(x) € R™ are regarded as column vectors.
This transformation is linear.

X 1 0 2 X
Example. Ly | =3 4 7 y
z 05 8 z

Let e; = (1,0,0), e = (0,1,0), es = (0,0,1) be the
standard basis for R®. We have that L(e;) = (1,3,0),

L(ey) = (0,4,5), L(es)=(2,7,8). Thus L(e;),L(es),L(es)
are columns of the matrix.



Problem. Find a linear mapping L : R3 — R?
such that L(e;) = (1,1), L(ez) = (0,—2),
L(e3) = (3,0), where e;, e;, e; is the standard
basis for R3.

L(x,y,z) = L(xe; + ye, + ze3)
= xL(e1) + yL(ez) + zL(e3)
=x(1,1) + y(0,—2) + 2(3,0) = (x + 3z, x — 2y)

Lxy.z)= (XF32) (1 03 x
Vo2l = \x—2y) T 1 =2 0 g

Columns of the matrix are vectors L(e;), L(ey), L(e3).



Theorem Suppose L:R" — R™ is a linear map. Then
there exists an mxn matrix A such that L(x) = Ax for all

x € R". Columns of A are vectors L(ey1), L(ep),...,L(e,),
where e, e,, ..., e, is the standard basis for R".
n a1 di2 ... din X1
y2 a1 dx» ... dp X2
y=Ax <<— . =
Ym dml dm2 .- dmn Xn
n ai a2 ain
Y2 a ax» a2
<~ =X + X + 4 X,

Ym dmi dm?2 dmn



Let V and W be vector spaces and S be a subset of V.

Theorem (i) If S spans V/, then any linear transformation
L:V — W is uniquely determined by its restriction to S.

(ii) If S is linearly independent then any function L:S — W
can be extended to a linear transformation from V to W.

(iii) If S is a basis for V then any function L:S — W can
be uniquely extended to a linear transformation from V to W.

Idea of the proof: If v = rvy+ nvy+---+ r,v,, where
v, €S, r; €R, then L(v) = rL(vi)+ nl(va)+ -+ r,L(v,)
for any linear map L:V — W.



