MATH 323 Linear Algebra Lecture 16: Range and kernel. General linear equations. Multiplication by a matrix as a linear map.

Linear transformation

Definition. Given vector spaces V_1 and V_2 , a mapping $L: V_1 \rightarrow V_2$ is **linear** if $\begin{array}{c}
L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y}), \\
\hline
L(r\mathbf{x}) = rL(\mathbf{x})
\end{array}$

for any $\mathbf{x}, \mathbf{y} \in V_1$ and $r \in \mathbb{R}$.

Basic properties of linear mappings:

•
$$L(r_1\mathbf{v}_1 + \cdots + r_k\mathbf{v}_k) = r_1L(\mathbf{v}_1) + \cdots + r_kL(\mathbf{v}_k)$$

for all $k \ge 1$, $\mathbf{v}_1, \ldots, \mathbf{v}_k \in V_1$, and $r_1, \ldots, r_k \in \mathbb{R}$.

• $L(\mathbf{0}_1) = \mathbf{0}_2$, where $\mathbf{0}_1$ and $\mathbf{0}_2$ are zero vectors in V_1 and V_2 , respectively.

•
$$L(-\mathbf{v}) = -L(\mathbf{v})$$
 for any $\mathbf{v} \in V_1$.

Examples of linear mappings

• Scaling $L: V \to V$, $L(\mathbf{v}) = s\mathbf{v}$, where $s \in \mathbb{R}$.

• Dot product with a fixed vector
$$\ell : \mathbb{R}^n \to \mathbb{R}, \ \ell(\mathbf{v}) = \mathbf{v} \cdot \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^n$$

• Cross product with a fixed vector
$$L: \mathbb{R}^3 \to \mathbb{R}^3, \ L(\mathbf{v}) = \mathbf{v} \times \mathbf{v}_0, \text{ where } \mathbf{v}_0 \in \mathbb{R}^3.$$

• Multiplication by a fixed matrix $L : \mathbb{R}^n \to \mathbb{R}^m$, $L(\mathbf{v}) = A\mathbf{v}$, where A is an $m \times n$ matrix and all vectors are column vectors.

• Coordinate mapping

 $L: V \to \mathbb{R}^n$, $L(\mathbf{v}) = \text{coordinates of } \mathbf{v}$ relative to an ordered basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ for the vector space V.

Linear mappings of functional vector spaces

- Evaluation at a fixed point $\ell : F(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = f(a), \text{ where } a \in \mathbb{R}.$
- Multiplication by a fixed function $L: F(\mathbb{R}) \to F(\mathbb{R}), \ L(f) = gf, \text{ where } g \in F(\mathbb{R}).$
 - Differentiation $D: C^1(\mathbb{R}) \to C(\mathbb{R}), \ D(f) = f'.$
- Integration over a finite interval $\ell: C(\mathbb{R}) \to \mathbb{R}, \ \ell(f) = \int_{a}^{b} f(x) dx$, where $a, b \in \mathbb{R}, \ a < b$.
- Change of the variable $L: F(\mathbb{R}) \to F(\mathbb{R}), \ L(f) = f \circ \phi, \text{ where } \phi \in F(\mathbb{R}).$

Examples. $\mathcal{M}_{m,n}(\mathbb{R})$: the space of $m \times n$ matrices.

•
$$\alpha : \mathcal{M}_{m,n}(\mathbb{R}) \to \mathcal{M}_{n,m}(\mathbb{R}), \quad \alpha(A) = A^T.$$

 $\alpha(A+B) = \alpha(A) + \alpha(B) \iff (A+B)^T = A^T + B^T.$
 $\alpha(rA) = r \alpha(A) \iff (rA)^T = rA^T.$
Hence α is linear.

•
$$\beta : \mathcal{M}_{2,2}(\mathbb{R}) \to \mathbb{R}, \quad \beta(A) = \det A.$$

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$
Then $A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$

We have det(A) = det(B) = 0 while det(A + B) = 1. Hence $\beta(A + B) \neq \beta(A) + \beta(B)$ so that β is not linear.

Range and kernel

Let V, W be vector spaces and $L: V \rightarrow W$ be a linear map.

Definition. The range (or image) of *L* is the set of all vectors $\mathbf{w} \in W$ such that $\mathbf{w} = L(\mathbf{v})$ for some $\mathbf{v} \in V$. The range of *L* is denoted L(V).

The **kernel** of *L*, denoted ker *L*, is the set of all vectors $\mathbf{v} \in V$ such that $L(\mathbf{v}) = \mathbf{0}$.

Theorem (i) If V_0 is a subspace of V then $L(V_0)$ is a subspace of W. (ii) If W_0 is a subspace of W then $L^{-1}(W_0)$ is a subspace of V.

Corollary (i) The range of L is a subspace of W. (ii) The kernel of L is a subspace of V.

Example.
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
, $L\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 1 & 2 & -1\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$

.

The kernel ker(L) is the nullspace of the matrix.

$$L\begin{pmatrix}x\\y\\z\end{pmatrix} = x\begin{pmatrix}1\\1\\1\end{pmatrix} + y\begin{pmatrix}0\\2\\0\end{pmatrix} + z\begin{pmatrix}-1\\-1\\-1\end{pmatrix}$$

The range $L(\mathbb{R}^3)$ is the column space of the matrix.

Example.
$$L: \mathbb{R}^3 \to \mathbb{R}^3$$
, $L\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & -1\\ 1 & 2 & -1\\ 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix}$

The range of L is spanned by vectors (1, 1, 1), (0, 2, 0), and (-1, -1, -1). It follows that $L(\mathbb{R}^3)$ is the plane spanned by (1, 1, 1) and (0, 1, 0).

To find ker(L), we apply row reduction to the matrix:

$$\begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & -1 \\ 1 & 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Hence $(x, y, z) \in \text{ker}(L)$ if x - z = y = 0. It follows that ker(L) is the line spanned by (1, 0, 1).

More examples

•
$$L: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathcal{M}_{2,2}(\mathbb{R}), \quad L(A) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} A.$$

 $L \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} c & d \\ 0 & 0 \end{pmatrix}.$

The range of *L* is the subspace of matrices with the zero second row, ker *L* is the same as the range $\implies L(L(A)) = O.$

•
$$D: \mathcal{P}_4 \to \mathcal{P}_4$$
, $(Dp)(x) = p'(x)$.
 $p(x) = ax^3 + bx^2 + cx + d \implies (Dp)(x) = 3ax^2 + 2bx + c$
The range of D is \mathcal{P}_3 , ker $D = \mathcal{P}_1$.

Example. L:
$$C^3(\mathbb{R}) \rightarrow C(\mathbb{R}), \ L(u) = u''' - 2u'' + u'.$$

According to the theory of differential equations, the initial value problem

$$\left\{ egin{array}{ll} u'''(x)-2u''(x)+u'(x)=g(x), & x\in \mathbb{R}, \ u(a)=b_0, & u'(a)=b_1, & u''(a)=b_2 \end{array}
ight.$$

has a unique solution for any $g \in C(\mathbb{R})$ and any $b_0, b_1, b_2 \in \mathbb{R}$. It follows that $L(C^3(\mathbb{R})) = C(\mathbb{R})$.

Also, the initial data evaluation I(u) = (u(a), u'(a), u''(a)), which is a linear mapping $I : C^3(\mathbb{R}) \to \mathbb{R}^3$, becomes invertible when restricted to ker(L). Hence dim ker(L) = 3 since any invertible linear transformation maps a basis to a basis.

It is easy to check that $L(xe^x) = L(e^x) = L(1) = 0$. Besides, the functions xe^x , e^x , and 1 are linearly independent (use Wronskian). It follows that $ker(L) = Span(xe^x, e^x, 1)$.

General linear equation

Definition. A linear equation is an equation of the form

$$L(\mathbf{x}) = \mathbf{b}$$
,

where $L: V \to W$ is a linear mapping, **b** is a given vector from W, and **x** is an unknown vector from V.

The range of L is the set of all vectors $\mathbf{b} \in W$ such that the equation $L(\mathbf{x}) = \mathbf{b}$ has a solution.

The kernel of *L* is the solution set of the **homogeneous** linear equation $L(\mathbf{x}) = \mathbf{0}$.

Theorem If the linear equation $L(\mathbf{x}) = \mathbf{b}$ is solvable and dim ker $L < \infty$, then the general solution is

$$\mathbf{x}_0 + t_1 \mathbf{v}_1 + \cdots + t_k \mathbf{v}_k$$
,

where \mathbf{x}_0 is a particular solution, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ is a basis for the kernel of L, and t_1, \ldots, t_k are arbitrary scalars.

Example.
$$\begin{cases} x + y + z = 4, \\ x + 2y = 3. \end{cases}$$

 $L : \mathbb{R}^3 \to \mathbb{R}^2, \quad L \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$
Linear equation: $L(\mathbf{x}) = \mathbf{b}$, where $\mathbf{b} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}.$
 $\begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 1 & 2 & 0 & | & 3 \end{pmatrix} \to \begin{pmatrix} 1 & 1 & 1 & | & 4 \\ 0 & 1 & -1 & | & -1 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 2 & | & 5 \\ 0 & 1 & -1 & | & -1 \end{pmatrix}$
 $\begin{cases} x + 2z = 5 \\ y - z = -1 \end{cases} \iff \begin{cases} x = 5 - 2z \\ y = -1 + z \end{cases}$
 $(x, y, z) = (5 - 2t, -1 + t, t) = (5, -1, 0) + t(-2, 1, 1).$

Example. $u'''(x) - 2u''(x) + u'(x) = e^{2x}$. Linear operator $L: C^3(\mathbb{R}) \to C(\mathbb{R})$, Lu = u''' - 2u'' + u'.

Linear equation: Lu = b, where $b(x) = e^{2x}$.

We already know that functions xe^x , e^x and 1 form a basis for the kernel of *L*. It remains to find a particular solution.

 $L(e^{2x}) = 8e^{2x} - 2(4e^{2x}) + 2e^{2x} = 2e^{2x}.$ Since *L* is a linear operator, $L(\frac{1}{2}e^{2x}) = e^{2x}.$ Particular solution: $u_0(x) = \frac{1}{2}e^{2x}.$

Thus the general solution is

l

$$u(x) = \frac{1}{2}e^{2x} + t_1xe^x + t_2e^x + t_3.$$

Multiplication by a matrix as a linear map

Any $m \times n$ matrix A gives rise to a transformation $L : \mathbb{R}^n \to \mathbb{R}^m$ given by $L(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$ and $L(\mathbf{x}) \in \mathbb{R}^m$ are regarded as column vectors. This transformation is **linear**.

Example.
$$L\begin{pmatrix}x\\y\\z\end{pmatrix} = \begin{pmatrix}1 & 0 & 2\\3 & 4 & 7\\0 & 5 & 8\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}$$
.

Let $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_3 = (0, 0, 1)$ be the standard basis for \mathbb{R}^3 . We have that $L(\mathbf{e}_1) = (1, 3, 0)$, $L(\mathbf{e}_2) = (0, 4, 5)$, $L(\mathbf{e}_3) = (2, 7, 8)$. Thus $L(\mathbf{e}_1)$, $L(\mathbf{e}_2)$, $L(\mathbf{e}_3)$ are columns of the matrix.

Problem. Find a linear mapping $L : \mathbb{R}^3 \to \mathbb{R}^2$ such that $L(\mathbf{e}_1) = (1, 1)$, $L(\mathbf{e}_2) = (0, -2)$, $L(\mathbf{e}_3) = (3, 0)$, where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ is the standard basis for \mathbb{R}^3 .

$$L(x, y, z) = L(x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3)$$

= $xL(\mathbf{e}_1) + yL(\mathbf{e}_2) + zL(\mathbf{e}_3)$
= $x(1, 1) + y(0, -2) + z(3, 0) = (x + 3z, x - 2y)$
 $L(x, y, z) = \begin{pmatrix} x + 3z \\ x - 2y \end{pmatrix} = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Columns of the matrix are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), L(\mathbf{e}_3)$.

Theorem Suppose $L : \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Then there exists an $m \times n$ matrix A such that $L(\mathbf{x}) = A\mathbf{x}$ for all $\mathbf{x} \in \mathbb{R}^n$. Columns of A are vectors $L(\mathbf{e}_1), L(\mathbf{e}_2), \ldots, L(\mathbf{e}_n)$, where $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ is the standard basis for \mathbb{R}^n .

Let V and W be vector spaces and S be a subset of V.

Theorem (i) If S spans V, then any linear transformation $L: V \to W$ is uniquely determined by its restriction to S. (ii) If S is linearly independent then any function $L: S \to W$ can be extended to a linear transformation from V to W. (iii) If S is a basis for V then any function $L: S \to W$ can be uniquely extended to a linear transformation from V to W.

Idea of the proof: If $\mathbf{v} = r_1\mathbf{v}_1 + r_2\mathbf{v}_2 + \cdots + r_n\mathbf{v}_n$, where $\mathbf{v}_i \in S$, $r_i \in \mathbb{R}$, then $L(\mathbf{v}) = r_1L(\mathbf{v}_1) + r_2L(\mathbf{v}_2) + \cdots + r_nL(\mathbf{v}_n)$ for any linear map $L: V \to W$.