MATH 323
 Linear Algebra
 Lecture 19:

Eigenvalues and eigenvectors (continued). Diagonalization.

Eigenvalues and eigenvectors of a matrix

Definition. Let A be an $n \times n$ matrix. A number $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix A if $A \mathbf{v}=\lambda \mathbf{v}$ for a nonzero column vector $\mathbf{v} \in \mathbb{R}^{n}$. The vector \mathbf{v} is called an eigenvector of A belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace $N(A-\lambda I)$, which is nontrivial, is called the eigenspace of A corresponding to λ. The eigenspace consists of all eigenvectors belonging to the eigenvalue λ plus the zero vector.

Characteristic equation

Definition. Given a square matrix A, the equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A.
Eigenvalues λ of A are roots of the characteristic equation.

If A is an $n \times n$ matrix then $p(\lambda)=\operatorname{det}(A-\lambda I)$ is a polynomial of degree n. It is called the characteristic polynomial of A.

Theorem Any $n \times n$ matrix has at most n eigenvalues.

Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and $L: V \rightarrow V$ be a linear operator. A number λ is called an eigenvalue of the operator L if $L(\mathbf{v})=\lambda \mathbf{v}$ for a nonzero vector $\mathbf{v} \in V$. The vector \mathbf{v} is called an eigenvector of L associated with the eigenvalue λ. (If V is a functional vector space then eigenvectors are usually called eigenfunctions.)

If $V=\mathbb{R}^{n}$ then the linear operator L is given by $L(\mathbf{x})=A \mathbf{x}$, where A is an $n \times n$ matrix (and \mathbf{x} is regarded a column vector). In this case, eigenvalues and eigenvectors of the operator L are precisely eigenvalues and eigenvectors of the matrix A.

Eigenspaces

Let $L: V \rightarrow V$ be a linear operator.
For any $\lambda \in \mathbb{R}$, let V_{λ} denotes the set of all solutions of the equation $L(\mathbf{x})=\lambda \mathbf{x}$.
Then V_{λ} is a subspace of V since V_{λ} is the kernel of a linear operator given by $\mathbf{x} \mapsto L(\mathbf{x})-\lambda \mathbf{x}$.
V_{λ} minus the zero vector is the set of all eigenvectors of L associated with the eigenvalue λ. In particular, $\lambda \in \mathbb{R}$ is an eigenvalue of L if and only if $V_{\lambda} \neq\{\mathbf{0}\}$.
If $V_{\lambda} \neq\{\mathbf{0}\}$ then it is called the eigenspace of L corresponding to the eigenvalue λ.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad D: V \rightarrow V, \quad D f=f^{\prime}$.
A function $f \in C^{\infty}(\mathbb{R})$ is an eigenfunction of the operator D belonging to an eigenvalue λ if $f^{\prime}(x)=\lambda f(x)$ for all $x \in \mathbb{R}$.
It follows that $f(x)=c e^{\lambda x}$, where c is a nonzero constant.

Thus each $\lambda \in \mathbb{R}$ is an eigenvalue of D.
The corresponding eigenspace is spanned by $e^{\lambda x}$.

Example. $\quad V=C^{\infty}(\mathbb{R}), \quad L: V \rightarrow V, \quad L f=f^{\prime \prime}$. $L f=\lambda f \Longleftrightarrow f^{\prime \prime}(x)-\lambda f(x)=0$ for all $x \in \mathbb{R}$.

It follows that each $\lambda \in \mathbb{R}$ is an eigenvalue of L and the corresponding eigenspace V_{λ} is two-dimensional. Note that $L=D^{2}$, hence $D f=\mu f \Longrightarrow L f=\mu^{2} f$. If $\lambda>0$ then $V_{\lambda}=\operatorname{Span}\left(e^{\mu x}, e^{-\mu x}\right)$, where $\mu=\sqrt{\lambda}$.

If $\lambda<0$ then $V_{\lambda}=\operatorname{Span}(\sin (\mu x), \cos (\mu x))$, where $\mu=\sqrt{-\lambda}$.
If $\lambda=0$ then $V_{\lambda}=\operatorname{Span}(1, x)$.

Suppose $L: V \rightarrow V$ is a linear operator on a finite-dimensional vector space V.
Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ be a basis for V and $g: V \rightarrow \mathbb{R}^{n}$ be the corresponding coordinate mapping. Let A be the matrix of L with respect to this basis. Then

$$
L(\mathbf{v})=\lambda \mathbf{v} \Longleftrightarrow A g(\mathbf{v})=\lambda g(\mathbf{v})
$$

Hence the eigenvalues of L coincide with those of the matrix A. Moreover, the associated eigenvectors of A are coordinates of the eigenvectors of L.

Definition. The characteristic polynomial $p(\lambda)=\operatorname{det}(A-\lambda I)$ of the matrix A is called the characteristic polynomial of the operator L.
Then eigenvalues of L are roots of its characteristic polynomial.

Theorem. The characteristic polynomial of the operator L is well defined. That is, it does not depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a different basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$. Then $A=U B U^{-1}$, where U is the transition matrix from the basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ to $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$. We have to show that $\operatorname{det}(A-\lambda I)=\operatorname{det}(B-\lambda I)$ for all $\lambda \in \mathbb{R}$. We obtain

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(U B U^{-1}-\lambda I\right)
$$

$$
=\operatorname{det}\left(U B U^{-1}-U(\lambda I) U^{-1}\right)=\operatorname{det}\left(U(B-\lambda I) U^{-1}\right)
$$

$$
=\operatorname{det}(U) \operatorname{det}(B-\lambda I) \operatorname{det}\left(U^{-1}\right)=\operatorname{det}(B-\lambda I)
$$

Basis of eigenvectors

Let V be a finite-dimensional vector space and $L: V \rightarrow V$ be a linear operator. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ be a basis for V and A be the matrix of the operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are eigenvectors of L. If this is the case, then the diagonal entries of the matrix A are the corresponding eigenvalues of L.

$$
L\left(\mathbf{v}_{i}\right)=\lambda_{i} \mathbf{v}_{i} \Longleftrightarrow A=\left(\begin{array}{llll}
\lambda_{1} & & & O \\
& \lambda_{2} & & \\
& & \ddots & \\
O & & & \lambda_{n}
\end{array}\right)
$$

Theorem If $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are eigenvectors of a linear operator L associated with distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$, then $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$ are linearly independent.

Corollary 1 If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct real numbers, then the functions $e^{\lambda_{1} x}, e^{\lambda_{2} x}, \ldots, e^{\lambda_{k} x}$ are linearly independent.

Proof: Consider a linear operator $D: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})$ given by $D f=f^{\prime}$. Then $e^{\lambda_{1} x}, \ldots, e^{\lambda_{k} x}$ are eigenfunctions of D associated with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. By the theorem, the eigenfunctions are linearly independent.

How to find a basis of eigenvectors

Corollary 2 Suppose $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are all eigenvalues of a linear operator $L: V \rightarrow V$. For any $i, 1 \leq i \leq k$, let S_{i} be a basis for the eigenspace associated to the eigenvalue λ_{i}. Then these bases are disjoint and the union $S=S_{1} \cup S_{2} \cup \cdots \cup S_{k}$ is a linearly independent set.

Moreover, if the vector space V admits a basis consisting of eigenvectors of L, then S is such a basis.

Corollary 3 Let A be an $n \times n$ matrix such that the characteristic equation $\operatorname{det}(A-\lambda I)=0$ has n distinct roots. Then (i) there is a basis for \mathbb{R}^{n} consisting of eigenvectors of A; (ii) all eigenspaces of A are one-dimensional.

Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

- the matrix of L with respect to some basis is diagonal;
- there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these conditions.

Theorem 2 Let A be an $n \times n$ matrix. Then the following conditions are equivalent:

- A is the matrix of a diagonalizable operator;
- A is similar to a diagonal matrix, i.e., it is represented as
$A=U B U^{-1}$, where the matrix B is diagonal;
- there exists a basis for \mathbb{R}^{n} formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.

Example. $\quad A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 1 and 3 .
- The eigenspace of A associated with the eigenvalue 1 is the line spanned by $\mathbf{v}_{1}=(-1,1)$.
- The eigenspace of A associated with the eigenvalue 3 is the line spanned by $\mathbf{v}_{2}=(1,1)$. - Eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} form a basis for \mathbb{R}^{2}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad U=\left(\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right) .
$$

Notice that U is the transition matrix from the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ to the standard basis.

Example. $\quad A=\left(\begin{array}{rrr}1 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 2\end{array}\right)$.

- The matrix A has two eigenvalues: 0 and 2 .
- The eigenspace for 0 is one-dimensional; it has a basis
$S_{1}=\left\{\mathbf{v}_{1}\right\}$, where $\mathbf{v}_{1}=(-1,1,0)$.
- The eigenspace for 2 is two-dimensional; it has a basis
$S_{2}=\left\{\mathbf{v}_{2}, \mathbf{v}_{3}\right\}$, where $\mathbf{v}_{2}=(1,1,0), \mathbf{v}_{3}=(-1,0,1)$.
- The union $S_{1} \cup S_{2}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is a linearly independent set, hence it is a basis for \mathbb{R}^{3}.

Thus the matrix A is diagonalizable. Namely, $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), \quad U=\left(\begin{array}{rrr}
-1 & 1 & -1 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

There are two obstructions to existence of a basis consisting of eigenvectors. They are illustrated by the following examples.
Example 1. $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
$\operatorname{det}(A-\lambda I)=(\lambda-1)^{2}$. Hence $\lambda=1$ is the only eigenvalue. The associated eigenspace is the line $t(1,0)$.
Example 2. $\quad A=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. $\operatorname{det}(A-\lambda I)=\lambda^{2}+1$.
\Longrightarrow no real eigenvalues or eigenvectors
(However there are complex eigenvalues/eigenvectors.)

To diagonalize an $n \times n$ matrix A is to find a diagonal matrix B and an invertible matrix U such that $A=U B U^{-1}$.

Suppose there exists a basis $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ for \mathbb{R}^{n} consisting of eigenvectors of A. That is, $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}$, where $\lambda_{k} \in \mathbb{R}$.
Then $A=U B U^{-1}$, where $B=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ and U is a transition matrix whose columns are vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$.

Example. $\quad A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right) . \quad \operatorname{det}(A-\lambda I)=(4-\lambda)(1-\lambda)$.
Eigenvalues: $\lambda_{1}=4, \lambda_{2}=1$.
Associated eigenvectors: $\mathbf{v}_{1}=\binom{1}{0}, \mathbf{v}_{2}=\binom{-1}{1}$.
Thus $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Suppose we have a problem that involves a square matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal matrix is simple. Then the diagonalization may help in solving this problem (or may not). Namely, it may reduce the case of a diagonalizable matrix to that of a diagonal one.

An example of such a problem is, given a square matrix A, to find its power A^{k} :
$A=\left(\begin{array}{cccc}s_{1} & & & O \\ & s_{2} & & \\ & & \ddots & \\ 0 & & & s_{n}\end{array}\right) \Longrightarrow A^{k}=\left(\begin{array}{cccc}s_{1}^{k} & & & O \\ & s_{2}^{k} & & \\ & & \ddots & \\ 0 & & & s_{n}^{k}\end{array}\right)$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find A^{5}.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then $A^{5}=U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1} U B U^{-1}$

$$
\begin{aligned}
& =U B^{5} U^{-1}=\left(\begin{array}{lr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1024 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1024 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1024 & 1023 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find $A^{k}(k \geq 1)$.
We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Then

$$
\begin{aligned}
A^{k} & =U B^{k} U^{-1}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
4^{k} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{rr}
4^{k} & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
4^{k} & 4^{k}-1 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Problem. Let $A=\left(\begin{array}{ll}4 & 3 \\ 0 & 1\end{array}\right)$. Find a matrix C such that $C^{2}=A$.

We know that $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

Suppose that $D^{2}=B$ for some matrix D. Let $C=U D U^{-1}$. Then $C^{2}=U D U^{-1} U D U^{-1}=U D^{2} U^{-1}=U B U^{-1}=A$.
We can take $D=\left(\begin{array}{cc}\sqrt{4} & 0 \\ 0 & \sqrt{1}\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
Then $C=\left(\begin{array}{rr}1 & -1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right)$.

Initial value problem for a system of linear ODEs:
$\left\{\begin{array}{l}\frac{d x}{d t}=4 x+3 y, \\ \frac{d y}{d t}=y,\end{array}\right.$

$$
x(0)=1, \quad y(0)=1
$$

The system can be rewritten in vector form:

$$
\frac{d \mathbf{v}}{d t}=A \mathbf{v}, \quad \text { where } A=\left(\begin{array}{ll}
4 & 3 \\
0 & 1
\end{array}\right), \quad \mathbf{v}=\binom{x}{y} .
$$

Matrix A is diagonalizable: $A=U B U^{-1}$, where

$$
B=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right), \quad U=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Let $\mathbf{w}=\binom{w_{1}}{w_{2}}$ be coordinates of the vector \mathbf{v} relative to the basis $\mathbf{v}_{1}=(1,0), \mathbf{v}_{2}=(-1,1)$ of eigenvectors of A. Then $\mathbf{v}=U \mathbf{w} \Longrightarrow \mathbf{w}=U^{-1} \mathbf{v}$.

It follows that

$$
\frac{d \mathbf{w}}{d t}=\frac{d}{d t}\left(U^{-1} \mathbf{v}\right)=U^{-1} \frac{d \mathbf{v}}{d t}=U^{-1} A \mathbf{v}=U^{-1} A U \mathbf{w} .
$$

Hence $\quad \frac{d \mathbf{w}}{d t}=B \mathbf{w} \quad \Longleftrightarrow\left\{\begin{array}{l}\frac{d w_{1}}{d t}=4 w_{1}, \\ \frac{d w_{2}}{d t}=w_{2} .\end{array}\right.$
General solution: $w_{1}(t)=c_{1} e^{4 t}, w_{2}(t)=c_{2} e^{t}$, where $c_{1}, c_{2} \in \mathbb{R}$.
Initial condition:

$$
\mathbf{w}(0)=U^{-1} \mathbf{v}(0)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)^{-1}\binom{1}{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{1} .
$$

Thus $w_{1}(t)=2 e^{4 t}, w_{2}(t)=e^{t}$. Then

$$
\binom{x(t)}{y(t)}=U \mathbf{w}(t)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\binom{2 e^{4 t}}{e^{t}}=\binom{2 e^{4 t}-e^{t}}{e^{t}} .
$$

