
MATH 323

Linear Algebra

Lecture 19:
Eigenvalues and eigenvectors (continued).

Diagonalization.



Eigenvalues and eigenvectors of a matrix

Definition. Let A be an n×n matrix. A number
λ ∈ R is called an eigenvalue of the matrix A if
Av = λv for a nonzero column vector v ∈ R

n.

The vector v is called an eigenvector of A
belonging to (or associated with) the eigenvalue λ.

If λ is an eigenvalue of A then the nullspace

N(A− λI ), which is nontrivial, is called the
eigenspace of A corresponding to λ. The

eigenspace consists of all eigenvectors belonging
to the eigenvalue λ plus the zero vector.



Characteristic equation

Definition. Given a square matrix A, the equation
det(A− λI ) = 0 is called the characteristic

equation of A.

Eigenvalues λ of A are roots of the characteristic
equation.

If A is an n×n matrix then p(λ) = det(A− λI ) is a

polynomial of degree n. It is called the
characteristic polynomial of A.

Theorem Any n×n matrix has at most n

eigenvalues.



Eigenvalues and eigenvectors of an operator

Definition. Let V be a vector space and L : V → V

be a linear operator. A number λ is called an

eigenvalue of the operator L if L(v) = λv for a
nonzero vector v ∈ V . The vector v is called an
eigenvector of L associated with the eigenvalue λ.

(If V is a functional vector space then eigenvectors
are usually called eigenfunctions.)

If V = R
n then the linear operator L is given by

L(x) = Ax, where A is an n×n matrix (and x is
regarded a column vector). In this case, eigenvalues

and eigenvectors of the operator L are precisely
eigenvalues and eigenvectors of the matrix A.



Eigenspaces

Let L : V → V be a linear operator.

For any λ ∈ R, let Vλ denotes the set of all

solutions of the equation L(x) = λx.

Then Vλ is a subspace of V since Vλ is the kernel

of a linear operator given by x 7→ L(x)− λx.

Vλ minus the zero vector is the set of all
eigenvectors of L associated with the eigenvalue λ.

In particular, λ ∈ R is an eigenvalue of L if and
only if Vλ 6= {0}.
If Vλ 6= {0} then it is called the eigenspace of L

corresponding to the eigenvalue λ.



Example. V = C∞(R), D : V → V , Df = f ′.

A function f ∈ C∞(R) is an eigenfunction of the

operator D belonging to an eigenvalue λ if
f ′(x) = λf (x) for all x ∈ R.

It follows that f (x) = ceλx , where c is a nonzero

constant.

Thus each λ ∈ R is an eigenvalue of D.
The corresponding eigenspace is spanned by eλx .



Example. V = C∞(R), L : V → V , Lf = f ′′.

Lf = λf ⇐⇒ f ′′(x)− λf (x) = 0 for all x ∈ R.

It follows that each λ ∈ R is an eigenvalue of L and

the corresponding eigenspace Vλ is two-dimensional.
Note that L=D2, hence Df = µf =⇒ Lf = µ2f .

If λ > 0 then Vλ = Span(eµx , e−µx), where

µ =
√
λ.

If λ < 0 then Vλ = Span
(

sin(µx), cos(µx)
)

, where

µ =
√
−λ.

If λ = 0 then Vλ = Span(1, x).



Suppose L : V → V is a linear operator on a
finite-dimensional vector space V .

Let u1, u2, . . . , un be a basis for V and g : V → R
n be the

corresponding coordinate mapping. Let A be the matrix of L
with respect to this basis. Then

L(v) = λv ⇐⇒ Ag(v) = λ g(v).

Hence the eigenvalues of L coincide with those of the matrix
A. Moreover, the associated eigenvectors of A are coordinates
of the eigenvectors of L.

Definition. The characteristic polynomial

p(λ) = det(A− λI ) of the matrix A is called the
characteristic polynomial of the operator L.

Then eigenvalues of L are roots of its characteristic
polynomial.



Theorem. The characteristic polynomial of the
operator L is well defined. That is, it does not

depend on the choice of a basis.

Proof: Let B be the matrix of L with respect to a
different basis v1, v2, . . . , vn. Then A = UBU−1,

where U is the transition matrix from the basis
v1, . . . , vn to u1, . . . , un. We have to show that
det(A− λI ) = det(B − λI ) for all λ ∈ R. We

obtain
det(A− λI ) = det(UBU−1 − λI )

= det
(

UBU−1 − U(λI )U−1
)

= det
(

U(B − λI )U−1
)

= det(U) det(B − λI ) det(U−1) = det(B − λI ).



Basis of eigenvectors

Let V be a finite-dimensional vector space and

L : V → V be a linear operator. Let v1, v2, . . . , vn
be a basis for V and A be the matrix of the

operator L with respect to this basis.

Theorem The matrix A is diagonal if and only if
vectors v1, v2, . . . , vn are eigenvectors of L.

If this is the case, then the diagonal entries of the
matrix A are the corresponding eigenvalues of L.

L(vi) = λivi ⇐⇒ A =









λ1 O

λ2

. . .
O λn











Theorem If v1, v2, . . . , vk are eigenvectors of a
linear operator L associated with distinct

eigenvalues λ1, λ2, . . . , λk , then v1, v2, . . . , vk are
linearly independent.

Corollary 1 If λ1, λ2, . . . , λk are distinct real
numbers, then the functions eλ1x , eλ2x , . . . , eλkx are

linearly independent.

Proof: Consider a linear operator D : C∞(R) → C∞(R)
given by Df = f ′. Then eλ1x , . . . , eλkx are eigenfunctions of
D associated with distinct eigenvalues λ1, . . . , λk . By the
theorem, the eigenfunctions are linearly independent.



How to find a basis of eigenvectors

Corollary 2 Suppose λ1, λ2, . . . , λk are all eigenvalues of a
linear operator L : V → V . For any i , 1 ≤ i ≤ k, let Si be a
basis for the eigenspace associated to the eigenvalue λi . Then
these bases are disjoint and the union S = S1 ∪ S2 ∪ · · · ∪ Sk

is a linearly independent set.
Moreover, if the vector space V admits a basis consisting of

eigenvectors of L, then S is such a basis.

Corollary 3 Let A be an n×n matrix such that the
characteristic equation det(A− λI ) = 0 has n distinct roots.
Then (i) there is a basis for Rn consisting of eigenvectors of A;
(ii) all eigenspaces of A are one-dimensional.



Diagonalization

Theorem 1 Let L be a linear operator on a finite-dimensional
vector space V . Then the following conditions are equivalent:

• the matrix of L with respect to some basis is diagonal;
• there exists a basis for V formed by eigenvectors of L.

The operator L is diagonalizable if it satisfies these
conditions.

Theorem 2 Let A be an n×n matrix. Then the following
conditions are equivalent:

• A is the matrix of a diagonalizable operator;
• A is similar to a diagonal matrix, i.e., it is represented as
A = UBU−1, where the matrix B is diagonal;
• there exists a basis for Rn formed by eigenvectors of A.

The matrix A is diagonalizable if it satisfies these conditions.



Example. A =

(

2 1
1 2

)

.

• The matrix A has two eigenvalues: 1 and 3.
• The eigenspace of A associated with the

eigenvalue 1 is the line spanned by v1 = (−1, 1).
• The eigenspace of A associated with the

eigenvalue 3 is the line spanned by v2 = (1, 1).
• Eigenvectors v1 and v2 form a basis for R2.

Thus the matrix A is diagonalizable. Namely,

A = UBU−1, where

B =

(

1 0
0 3

)

, U =

(

−1 1
1 1

)

.

Notice that U is the transition matrix from the basis v1, v2 to
the standard basis.



Example. A =





1 1 −1
1 1 1
0 0 2



.

• The matrix A has two eigenvalues: 0 and 2.

• The eigenspace for 0 is one-dimensional; it has a basis
S1 = {v1}, where v1 = (−1, 1, 0).

• The eigenspace for 2 is two-dimensional; it has a basis
S2 = {v2, v3}, where v2 = (1, 1, 0), v3 = (−1, 0, 1).

• The union S1 ∪ S2 = {v1, v2, v3} is a linearly independent
set, hence it is a basis for R3.

Thus the matrix A is diagonalizable. Namely, A = UBU−1,
where

B =





0 0 0
0 2 0
0 0 2



, U =





−1 1 −1
1 1 0
0 0 1



.



There are two obstructions to existence of a basis
consisting of eigenvectors. They are illustrated by

the following examples.

Example 1. A =

(

1 1
0 1

)

.

det(A− λI ) = (λ− 1)2. Hence λ = 1 is the only
eigenvalue. The associated eigenspace is the line

t(1, 0).

Example 2. A =

(

0 −1
1 0

)

.

det(A− λI ) = λ2 + 1.
=⇒ no real eigenvalues or eigenvectors

(However there are complex eigenvalues/eigenvectors.)



To diagonalize an n×n matrix A is to find a diagonal matrix B

and an invertible matrix U such that A = UBU−1.

Suppose there exists a basis v1, . . . , vn for Rn consisting of
eigenvectors of A. That is, Avk = λkvk , where λk ∈ R.

Then A = UBU−1, where B = diag(λ1, λ2, . . . , λn) and U is
a transition matrix whose columns are vectors v1, v2, . . . , vn.

Example. A =

(

4 3
0 1

)

. det(A− λI ) = (4− λ)(1− λ).

Eigenvalues: λ1 = 4, λ2 = 1.

Associated eigenvectors: v1 =

(

1
0

)

, v2 =

(

−1
1

)

.

Thus A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.



Suppose we have a problem that involves a square
matrix A in the context of matrix multiplication.

Also, suppose that the case when A is a diagonal

matrix is simple. Then the diagonalization may
help in solving this problem (or may not). Namely,

it may reduce the case of a diagonalizable matrix to
that of a diagonal one.

An example of such a problem is, given a square

matrix A, to find its power Ak :

A =









s1 O

s2
. . .

O sn









=⇒ Ak =









sk
1

O

sk
2

. . .

O sk
n











Problem. Let A =

(

4 3
0 1

)

. Find A5.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Then A5 = UBU−1UBU−1UBU−1UBU−1UBU−1

= UB5U−1 =

(

1 −1

0 1

)(

1024 0

0 1

)(

1 1

0 1

)

=

(

1024 −1

0 1

)(

1 1

0 1

)

=

(

1024 1023

0 1

)

.



Problem. Let A =

(

4 3
0 1

)

. Find Ak (k ≥ 1).

We know that A = UBU−1, where

B =

(

4 0

0 1

)

, U =

(

1 −1

0 1

)

.

Then

Ak = UBkU−1 =

(

1 −1

0 1

)(

4k 0

0 1

)(

1 1

0 1

)

=

(

4k −1

0 1

)(

1 1

0 1

)

=

(

4k 4k − 1

0 1

)

.



Problem. Let A =

(

4 3
0 1

)

. Find a matrix C

such that C 2 = A.

We know that A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Suppose that D2 = B for some matrix D. Let C = UDU−1.
Then C 2 = UDU−1UDU−1 = UD2U−1 = UBU−1 = A.

We can take D =

(√
4 0

0
√
1

)

=

(

2 0
0 1

)

.

Then C =

(

1 −1
0 1

)(

2 0
0 1

)(

1 1
0 1

)

=

(

2 1
0 1

)

.



Initial value problem for a system of linear ODEs:
{

dx
dt

= 4x + 3y ,
dy

dt
= y ,

x(0) = 1, y(0) = 1.

The system can be rewritten in vector form:

dv

dt
= Av, where A =

(

4 3
0 1

)

, v =

(

x

y

)

.

Matrix A is diagonalizable: A = UBU−1, where

B =

(

4 0
0 1

)

, U =

(

1 −1
0 1

)

.

Let w =

(

w1

w2

)

be coordinates of the vector v relative to the

basis v1 = (1, 0), v2 = (−1, 1) of eigenvectors of A. Then

v = Uw =⇒ w = U−1v.



It follows that

dw

dt
=

d

dt
(U−1v) = U−1

dv

dt
= U−1Av = U−1AUw.

Hence
dw

dt
= Bw ⇐⇒

{

dw1

dt
= 4w1,

dw2

dt
= w2.

General solution: w1(t) = c1e
4t , w2(t) = c2e

t , where c1, c2 ∈ R.

Initial condition:

w(0) = U−1v(0) =

(

1 −1
0 1

)

−1(

1
1

)

=

(

1 1
0 1

)(

1
1

)

=

(

2
1

)

.

Thus w1(t) = 2e4t , w2(t) = et . Then
(

x(t)
y (t)

)

= Uw(t) =

(

1 −1
0 1

)(

2e4t

et

)

=

(

2e4t−et

et

)

.


