MATH 323

Linear Algebra

Orthogonal sets.

Norm on a vector space.

Lecture 22:

The Gram-Schmidt orthogonalization process.

Orthogonal sets

Let $\langle \cdot, \cdot \rangle$ denote the scalar product in \mathbb{R}^n .

Definition. Nonzero vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in \mathbb{R}^n$ form an **orthogonal set** if they are orthogonal to each other: $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = 0$ for $i \neq j$.

If, in addition, all vectors are of unit length, $\|\mathbf{v}_i\| = 1$, then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is called an **orthonormal set**.

Example. The standard basis $\mathbf{e}_1 = (1, 0, 0, \dots, 0)$, $\mathbf{e}_2 = (0, 1, 0, \dots, 0)$, ..., $\mathbf{e}_n = (0, 0, 0, \dots, 1)$. It is an orthonormal set.

Orthogonality \implies linear independence

Theorem Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are nonzero vectors that form an orthogonal set. Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ are linearly independent.

Proof: Suppose $t_1\mathbf{v}_1 + t_2\mathbf{v}_2 + \cdots + t_k\mathbf{v}_k = \mathbf{0}$ for some $t_1, t_2, \dots, t_k \in \mathbb{R}$. Our task is to show that $t_1 = t_2 = \cdots = t_k = 0$.

For any index i, $1 \le i \le k$ we have $\langle t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_k \mathbf{v}_k, \mathbf{v}_i \rangle = \langle \mathbf{0}, \mathbf{v}_i \rangle = 0$ $\implies t_1 \langle \mathbf{v}_1, \mathbf{v}_i \rangle + t_2 \langle \mathbf{v}_2, \mathbf{v}_i \rangle + \dots + t_k \langle \mathbf{v}_k, \mathbf{v}_i \rangle = 0.$

By orthogonality, $t_j \langle \mathbf{v}_j, \mathbf{v}_i \rangle = 0$ for all $j \neq i$. Then $t_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = 0$ as well, which implies $t_i = 0$.

Orthonormal bases

Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal basis for \mathbb{R}^n (i.e., it is a basis and an orthonormal set).

Theorem Let $\mathbf{x} = x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \cdots + x_n \mathbf{v}_n$ and $\mathbf{y} = y_1 \mathbf{v}_1 + y_2 \mathbf{v}_2 + \cdots + y_n \mathbf{v}_n$, where $x_i, y_j \in \mathbb{R}$. Then (i) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n$,

(ii)
$$\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

Proof: (ii) follows from (i) when y = x.

$$\langle \mathbf{x}, \mathbf{y} \rangle = \left\langle \sum_{i=1}^{n} x_{i} \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle = \sum_{i=1}^{n} x_{i} \left\langle \mathbf{v}_{i}, \sum_{j=1}^{n} y_{j} \mathbf{v}_{j} \right\rangle$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} y_{j} \langle \mathbf{v}_{i}, \mathbf{v}_{j} \rangle = \sum_{i=1}^{n} x_{i} y_{i}.$$

Suppose V is a subspace of \mathbb{R}^n . Let **p** be the orthogonal projection of a vector $\mathbf{x} \in \mathbb{R}^n$ onto V.

If V is a one-dimensional subspace spanned by a vector **v** then $\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$.

If V admits an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ then

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_k \rangle}{\langle \mathbf{v}_t, \mathbf{v}_t \rangle} \mathbf{v}_k.$$

$$\mathbf{p} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_k \rangle}{\langle \mathbf{v}_k, \mathbf{v}_k \rangle} \mathbf{v}_k.$$
Indeed, $\langle \mathbf{p}, \mathbf{v}_i \rangle = \sum_{j=1}^k \frac{\langle \mathbf{x}, \mathbf{v}_j \rangle}{\langle \mathbf{v}_j, \mathbf{v}_j \rangle} \langle \mathbf{v}_j, \mathbf{v}_i \rangle = \frac{\langle \mathbf{x}, \mathbf{v}_i \rangle}{\langle \mathbf{v}_i, \mathbf{v}_i \rangle} \langle \mathbf{v}_i, \mathbf{v}_i \rangle = \langle \mathbf{x}, \mathbf{v}_i \rangle$

$$\implies \langle \mathbf{x} - \mathbf{p}, \mathbf{v}_i \rangle = 0 \implies \mathbf{x} - \mathbf{p} \perp \mathbf{v}_i \implies \mathbf{x} - \mathbf{p} \perp V.$$

$$\langle \mathbf{v}, \mathbf{v} \rangle$$
If V admits an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ then

Coordinates relative to an orthogonal basis

Theorem If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthogonal basis for \mathbb{R}^n , then

$$\mathbf{x} = \frac{\langle \mathbf{x}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{x}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \dots + \frac{\langle \mathbf{x}, \mathbf{v}_n \rangle}{\langle \mathbf{v}_n, \mathbf{v}_n \rangle} \mathbf{v}_n$$

for any vector $\mathbf{x} \in \mathbb{R}^n$.

Corollary If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ is an orthonormal basis for \mathbb{R}^n , then

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \langle \mathbf{x}, \mathbf{v}_2 \rangle \mathbf{v}_2 + \dots + \langle \mathbf{x}, \mathbf{v}_n \rangle \mathbf{v}_n$$
 for any vector $\mathbf{x} \in \mathbb{R}^n$.

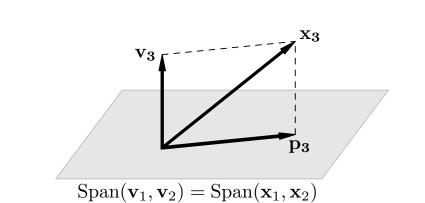
The Gram-Schmidt orthogonalization process

Let V be a subspace of \mathbb{R}^n . Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is a basis for V. Let

$$\mathbf{v}_1 = \mathbf{x}_1,$$
 $\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1,$
 $\mathbf{v}_3 = \mathbf{x}_3 - \frac{\langle \mathbf{x}_3, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \frac{\langle \mathbf{x}_3, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2,$
....

Then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is an orthogonal basis for V.

 $\mathbf{v}_k = \mathbf{x}_k - \frac{\langle \mathbf{x}_k, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 - \cdots - \frac{\langle \mathbf{x}_k, \mathbf{v}_{k-1} \rangle}{\langle \mathbf{v}_{k-1}, \mathbf{v}_{k-1} \rangle} \mathbf{v}_{k-1}.$



Any basis $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$

Orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$

Properties of the Gram-Schmidt process:

- $\mathbf{v}_{i} = \mathbf{x}_{i} (\alpha_{1}\mathbf{x}_{1} + \cdots + \alpha_{i-1}\mathbf{x}_{i-1}), \ 1 \leq j \leq k;$
- the span of $\mathbf{v}_1, \dots, \mathbf{v}_j$ is the same as the span of $\mathbf{x}_1, \dots, \mathbf{x}_j$;
 - \mathbf{v}_j is orthogonal to $\mathbf{x}_1, \ldots, \mathbf{x}_{j-1}$;
- $\mathbf{v}_j = \mathbf{x}_j \mathbf{p}_j$, where \mathbf{p}_j is the orthogonal projection of the vector \mathbf{x}_j on the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{j-1}$;
- $\|\mathbf{v}_j\|$ is the distance from \mathbf{x}_j to the subspace spanned by $\mathbf{x}_1, \dots, \mathbf{x}_{j-1}$.

Normalization

Let V be a subspace of \mathbb{R}^n . Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ is an orthogonal basis for V.

Let
$$\mathbf{w}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$$
, $\mathbf{w}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,..., $\mathbf{w}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}$.

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ is an orthonormal basis for V.

Theorem Any non-trivial subspace of \mathbb{R}^n admits an orthonormal basis.

Orthogonalization / Normalization

An alternative form of the Gram-Schmidt process combines orthogonalization with normalization.

Suppose $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ is a basis for a subspace $V \subset \mathbb{R}^n$. Let

$$\mathbf{v}_1 = \mathbf{x}_1$$
, $\mathbf{w}_1 = rac{\mathbf{v}_1}{\|\mathbf{v}_1\|}$,

$$\mathbf{v}_2 = \mathbf{x}_2 - \langle \mathbf{x}_2, \mathbf{w}_1 \rangle \mathbf{w}_1$$
, $\mathbf{w}_2 = rac{\mathbf{v}_2}{\|\mathbf{v}_2\|}$,

$$\mathbf{v}_3 = \mathbf{x}_3 - \langle \mathbf{x}_3, \mathbf{w}_1 \rangle \mathbf{w}_1 - \langle \mathbf{x}_3, \mathbf{w}_2 \rangle \mathbf{w}_2, \quad \mathbf{w}_3 = \frac{\mathbf{v}_3}{\|\mathbf{v}_3\|},$$

$$\mathbf{v}_k = \mathbf{x}_k - \langle \mathbf{x}_k, \mathbf{w}_1 \rangle \mathbf{w}_1 - \dots - \langle \mathbf{x}_k, \mathbf{w}_{k-1} \rangle \mathbf{w}_{k-1},$$
 $\mathbf{w}_k = \frac{\mathbf{v}_k}{\|\mathbf{v}_k\|}.$

Then $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_k$ is an orthonormal basis for V.

Problem. Let Π be the plane spanned by vectors $\mathbf{x}_1 = (1, 1, 0)$ and $\mathbf{x}_2 = (0, 1, 1)$.

(i) Find the orthogonal projection of the vector $\mathbf{y}=(4,0,-1)$ onto the plane Π . (ii) Find the distance from \mathbf{y} to Π .

First we apply the Gram-Schmidt process to the basis $\mathbf{x}_1, \mathbf{x}_2$: $\mathbf{v}_1 = \mathbf{x}_1 = (1, 1, 0)$,

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 = (0, 1, 1) - \frac{1}{2} (1, 1, 0) = (-1/2, 1/2, 1).$$

Now that $\mathbf{v}_1, \mathbf{v}_2$ is an orthogonal basis for Π , the orthogonal projection of \mathbf{y} onto Π is

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 = \frac{4}{2} (1, 1, 0) + \frac{-3}{3/2} (-1/2, 1/2, 1)$$
$$= (2, 2, 0) + (1, -1, -2) = (3, 1, -2).$$

The distance from \mathbf{y} to Π is $\|\mathbf{y} - \mathbf{p}\| = \|(1, -1, 1)\| = \sqrt{3}$.

Problem. Find the distance from the point $\mathbf{y} = (0,0,0,1)$ to the subspace $V \subset \mathbb{R}^4$ spanned by vectors $\mathbf{x}_1 = (1,-1,1,-1)$, $\mathbf{x}_2 = (1,1,3,-1)$, and $\mathbf{x}_3 = (-3,7,1,3)$.

First we apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ and obtain an orthogonal basis $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ for the subspace V. Next we compute the orthogonal projection \mathbf{p} of the vector \mathbf{y} onto V:

$$\mathbf{p} = \frac{\langle \mathbf{y}, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \mathbf{v}_1 + \frac{\langle \mathbf{y}, \mathbf{v}_2 \rangle}{\langle \mathbf{v}_2, \mathbf{v}_2 \rangle} \mathbf{v}_2 + \frac{\langle \mathbf{y}, \mathbf{v}_3 \rangle}{\langle \mathbf{v}_3, \mathbf{v}_3 \rangle} \mathbf{v}_3.$$

Then the distance from **y** to V equals $\|\mathbf{y} - \mathbf{p}\|$.

Alternatively, we can apply the Gram-Schmidt process to vectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{y}$. We should obtain an orthogonal system $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$. Then the desired distance will be $\|\mathbf{v}_4\|$.

$$\mathbf{x}_{1} = (1, -1, 1, -1), \ \mathbf{x}_{2} = (1, 1, 3, -1),$$

$$\mathbf{x}_{3} = (-3, 7, 1, 3), \ \mathbf{y} = (0, 0, 0, 1).$$

$$\mathbf{v}_{1} = \mathbf{x}_{1} = (1, -1, 1, -1),$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \frac{\langle \mathbf{x}_{2}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} = (1, 1, 3, -1) - \frac{4}{4}(1, -1, 1, -1)$$

$$= (0, 2, 2, 0),$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

 $=(-3,7,1,3)-\frac{-12}{4}(1,-1,1,-1)-\frac{16}{9}(0,2,2,0)$

= (0, 0, 0, 0).

The Gram-Schmidt process can be used to check linear independence of vectors! It failed because the vector \mathbf{x}_3 is a linear combination of \mathbf{x}_1 and \mathbf{x}_2 . V is a plane, not a 3-dimensional subspace. To fix things, it is enough to drop \mathbf{x}_3 , i.e., we should orthogonalize vectors \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{y} .

$$\tilde{\mathbf{v}}_{3} = \mathbf{y} - \frac{\langle \mathbf{y}, \mathbf{v}_{1} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} - \frac{\langle \mathbf{y}, \mathbf{v}_{2} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}
= (0, 0, 0, 1) - \frac{-1}{4} (1, -1, 1, -1) - \frac{0}{8} (0, 2, 2, 0)
= (1/4, -1/4, 1/4, 3/4).$$

$$|\tilde{\boldsymbol{v}}_3| = \left| \left(\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, \frac{3}{4} \right) \right| = \frac{1}{4} \left| (1, -1, 1, 3) \right| = \frac{\sqrt{12}}{4} = \frac{\sqrt{3}}{2}.$$

Norm

The notion of *norm* generalizes the notion of length of a vector in \mathbb{R}^n .

Definition. Let V be a vector space. A function $\alpha:V\to\mathbb{R}$ is called a **norm** on V if it has the following properties:

(i)
$$\alpha(\mathbf{x}) \geq 0$$
, $\alpha(\mathbf{x}) = 0$ only for $\mathbf{x} = \mathbf{0}$ (positivity)
(ii) $\alpha(r\mathbf{x}) = |r| \alpha(\mathbf{x})$ for all $r \in \mathbb{R}$ (homogeneity)
(iii) $\alpha(\mathbf{x} + \mathbf{y}) \leq \alpha(\mathbf{x}) + \alpha(\mathbf{y})$ (triangle inequality)

Notation. The norm of a vector $\mathbf{x} \in V$ is usually denoted $\|\mathbf{x}\|$. Different norms on V are distinguished by subscripts, e.g., $\|\mathbf{x}\|_1$ and $\|\mathbf{x}\|_2$.

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

•
$$\|\mathbf{x}\|_{\infty} = \max(|x_1|, |x_2|, \dots, |x_n|).$$

Positivity and homogeneity are obvious. Let ${\bf x} = (x_1, \dots, x_n)$ and ${\bf y} = (y_1, \dots, y_n)$. Then

$$\mathbf{x} = (x_1, \dots, x_n)$$
 and $\mathbf{y} = (y_1, \dots, y_n)$. Then $\mathbf{x} + \mathbf{y} = (x_1 + y_1, \dots, x_n + y_n)$. $|x_i + y_i| \le |x_i| + |y_i| \le \max_i |x_i| + \max_i |y_i|$

$$|x_i + y_i| \le |x_i| + |y_i| \le \max_j |x_j| + \max_j |y_j|$$

$$\implies \max_j |x_j + y_j| \le \max_j |x_j| + \max_j |y_j|$$

$$\implies \|\mathbf{x} + \mathbf{y}\|_{\infty} \le \|\mathbf{x}\|_{\infty} + \|\mathbf{y}\|_{\infty}.$$

•
$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_n|$$
.

Positivity and homogeneity are obvious. The triangle inequality: $|x_i + y_i| < |x_i| + |y_i|$

$$\implies \sum_{j} |x_j + y_j| \le \sum_{j} |x_j| + \sum_{j} |y_j|$$

Examples. $V = \mathbb{R}^n$, $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$.

• $\|\mathbf{x}\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{1/p}, \quad p > 0.$

Remark. $\|\mathbf{x}\|_2 = \text{Euclidean length of } \mathbf{x}$.

Theorem $\|\mathbf{x}\|_p$ is a norm on \mathbb{R}^n for any $p \geq 1$.

Positivity and homogeneity are still obvious (and hold for any p>0). The triangle inequality for $p\geq 1$ is known as the **Minkowski inequality**:

$$(|x_1 + y_1|^p + |x_2 + y_2|^p + \dots + |x_n + y_n|^p)^{1/p} \le$$

$$\le (|x_1|^p + \dots + |x_n|^p)^{1/p} + (|y_1|^p + \dots + |y_n|^p)^{1/p}.$$

Normed vector space

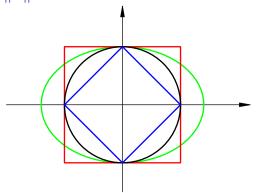
Definition. A **normed vector space** is a vector space endowed with a norm.

The norm defines a distance function on the normed vector space: $\operatorname{dist}(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|$.

Then we say that a vector \mathbf{x} is a good approximation of a vector \mathbf{x}_0 if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_0)$ is small.

Also, we say that a sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ converges to a vector \mathbf{x} if $\operatorname{dist}(\mathbf{x}, \mathbf{x}_n) \to 0$ as $n \to \infty$.

Unit circle: $\|\mathbf{x}\| = 1$



$$\begin{split} \|\mathbf{x}\| &= (x_1^2 + x_2^2)^{1/2} & \text{black} \\ \|\mathbf{x}\| &= \left(\frac{1}{2}x_1^2 + x_2^2\right)^{1/2} & \text{green} \\ \|\mathbf{x}\| &= |x_1| + |x_2| & \text{blue} \\ \|\mathbf{x}\| &= \max(|x_1|, |x_2|) & \text{red} \end{split}$$

Examples. $V = C[a, b], f : [a, b] \rightarrow \mathbb{R}.$

$$\bullet \quad \|f\|_{\infty} = \max_{a \le x \le b} |f(x)|.$$

•
$$||f||_1 = \int_a^b |f(x)| dx$$
.

•
$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}, \ p > 0.$$

Theorem $||f||_p$ is a norm on C[a, b] for any $p \ge 1$.