MATH 323
Linear Algebra

Lecture 23:
Review for Test 2.



Topics for Test 2
Vector spaces (Leon/de Pillis 3.4-3.6)

e Basis and dimension

e Rank and nullity of a matrix

e Coordinates relative to a basis

e Change of basis, transition matrix

Linear transformations (Leon/de Pillis 4.1-4.3)

Linear transformations

Range and kernel

Matrix transformations

Matrix of a linear transformation
Change of basis for a linear operator
Similar matrices



Topics for Test 2
Eigenvalues and eigenvectors (Leon/de Pillis 6.1, 6.3)

e Eigenvalues, eigenvectors, eigenspaces
e Characteristic polynomial
e Diagonalization

Orthogonality (Leon/de Pillis 5.1-5.3, 5.5-5.6)

Euclidean structure in R”
Orthogonal complement
Orthogonal projection
Least squares problems
Orthogonal sets

The Gram-Schmidt process



Sample problems for Test 2

0 -1 4 1
1 1 2 -1
Problem 1. Let A= _3 0 —1 0
2 -1 0 1

(i) Find the rank and the nullity of the matrix A.

(ii) Find a basis for the row space of A, then extend this basis
to a basis for R*.

(i) Find a basis for the nullspace of A.

Problem 2. Let A and B be two matrices such that the
product AB is well defined.

(i) Prove that rank(AB) < rank(B).
(ii) Prove that rank(AB) < rank(A).



Sample problems for Test 2

Problem 3. Complex numbers C form a vector space of
(real) dimension 2. Consider a function f : C — C given by
f(z) = (3+2i)z forall z € C.

(i) Prove that f is a linear operator on the vector space C.
(ii) Find the matrix of f relative to the basis 1, /.

Problem 4. Let V be a subspace of F(IR) spanned by
functions € and e™*. Let L be a linear operator on V such

that _g _; is the matrix of L relative to the basis e*,

e *. Find the matrix of L relative to the basis

coshx = 2(e*+ ™), sinhx = Z(e¥ — e ™).



Sample problems for Test 2

Problem 5. Let A=

[
N =N
== O

(i) Find all eigenvalues of the matrix A.

(ii) For each eigenvalue of A, find an associated eigenvector.
(iii) Is the matrix A diagonalizable? Explain.

(iv) Find all eigenvalues of the matrix A2.



Sample problems for Test 2

Problem 6. Find a linear polynomial which is the best least
squares fit to the following data:

x | =2]-1]0]1]2

=31 —2[1]2]5

Problem 7. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(i) Find an orthonormal basis for V.

(ii) Find an orthonormal basis for the orthogonal complement
v+

(iii) Find the distance from the vector y = (1,0,0,0) to the
subspaces V and V<.



0 -1 4 1

1 1 2 -1
Problem 1. Let A= 3 0 _1 0
2 -1 0 1

(i) Find the rank and the nullity of the matrix A.

The rank (= dimension of the row space) and the nullity

(= dimension of the nullspace) of a matrix are preserved under
elementary row operations. We apply such operations to
convert the matrix A into row echelon form.

Interchange the 1st row with the 2nd row:

1 1 2 -1
. 0 -1 4 1
-3 0 -1 0

2 -1 0 1



Add 3 times the 1st row to the 3rd row, then subtract 2 times
the 1st row from the 4th row:

1 12 -1 1 1 2 -1
0 -1 4 1 0 -1 4 1
o 35 3| "o 3 5 -3
2 -1 0 1 0 -3 —4 3

Multiply the 2nd row by —1:

1 1 2 -1
0 1 -4 -1
1o 3 5 -3
0 -3 -4 3
Add the 4th row to the 3rd row:
1 1 2 -1
0o 1 —4 -1
0 O 1 0

0 -3 -4 3



Add 3 times the 2nd row to the 4th row:

11 2 -1
. 01 -4 -1
00 1 0
00 -16 O

Add 16 times the 3rd row to the 4th row:

11 2 -1
. 01 —4 -1
00 1 O
00 0 O

Now that the matrix is in row echelon form, its rank equals the
number of nonzero rows, which is 3. Since

(rank of A) + (nullity of A) = (the number of columns of A) = 4,
it follows that the nullity of A equals 1.



0 -1 4 1

1 1 2 -1
Problem 1. Let A= _3 0 _1 0
2 —1 0 1

(ii) Find a basis for the row space of A, then extend this basis
to a basis for R*.

The row space of a matrix is invariant under elementary row
operations. Therefore the row space of the matrix A is the
same as the row space of its row echelon form:

0 -1 4 1 11 2 —1
1 1 2 -1 01 —4 —1
3 0 -1 0] 7loo0o 1 o
2 -1 0 1 00 0 0

The nonzero rows of the latter matrix are linearly independent
so that they form a basis for its row space:



vi=(1,1,2,—1), v, = (0,1,—4,—1), v3=(0,0,1,0).

To extend the basis vi, vy, vz to a basis for R* we need a
vector v4 € R* that is not a linear combination of vy, vy, vs.

It is known that at least one of the vectors e; = (1,0,0,0),
e; =(0,1,0,0), e3=(0,0,1,0), and e, = (0,0,0,1) can be
chosen as vy,.

In particular, the vectors vy, vy, vs, e, form a basis for R*.
This follows from the fact that the 4 x 4 matrix whose rows
are these vectors is not singular:

11 2 -1
01 -4 -1
00 1 o =1#O0
00 0 1



0 -1 4 1

1 1 2 -1
Problem 1. Let A= 3 0 _1 0
2 -1 0 1

(i) Find a basis for the nullspace of A.

The nullspace of A is the solution set of the system of linear
homogeneous equations with A as the coefficient matrix. To
solve the system, we convert A to reduced row echelon form:

11 2 -1 100 0
01 —4 —1 010 —1
“loo 1 o] “loo1 o
00 0 0 000 O

= x1=x—x=x3=0
General solution: (x, %2, x3,x4) = (0,¢,0,t) = ¢(0,1,0,1).
Thus the vector (0, 1,0, 1) forms a basis for the nullspace of A.



Problem 2. Let A and B be two matrices such
that the product AB is well defined.

(i) Prove that rank(AB) < rank(B).

Suppose that Bx = 0 for some column vector x. Then
(AB)x = A(Bx) = A0 = 0. It follows that the nullspace of B
is contained in the nullspace of AB. Consequently,

nullity(B) < nullity(AB). Since matrices AB and B have the
same number of columns, we obtain rank(AB) < rank(B).

(ii) Prove that rank(AB) < rank(A).

Note that rank(M) = rank(M") for any matrix M.
In particular, rank(AB) = rank((AB)") = rank(BTAT).
By the above, rank(BTAT) < rank(A") = rank(A).

Remark. Alternatively, one can show that the row space of
AB is contained in the row space of B while the column space
of AB is contained in the column space of A.



Problem 3. Complex numbers C form a vector space of
(real) dimension 2. Consider a function f : C — C given by
f(z) = (3+2i)z forall z € C.

(i) Prove that f is a linear operator on the vector space C.

We need to show that f(z + w) = f(z) + f(w) for z,w € C
and f(rz) = rf(z) forall r€ R and z € C. The first
condition means that (3+2i)(z+w) = (3+2i)z+ (3+2/)w;
it follows from the distributive law for complex numbers. The
second condition means that (3 + 2i)(rz) = r((3+ 2i)z); it
follows from commutativity and associativity of multiplication
of complex numbers.

(ii) Find the matrix of f relative to the basis 1, /.

Columns of the matrix are coordinates of the images (1) and

f(i) relative to the basis 1,i. Observe that the coordinates of

a complex number x + yi are (x,y). We obtain that

f(1)=3+2i and f(i) = (34 2i)i = =2+ 3i. Hence the
-2

) ) 3
matrix of f is 2 3



Problem 4. Let V be a subspace of F(RR) spanned by

functions €* and e™*. Let L be a linear operator on V such

2 -1\ . . . .
that ) is the matrix of L relative to the basis €%,

-3 2
e *. Find the matrix of L relative to the basis

coshx = 2(e¥ 4 ™), sinhx = 1(e* — e™).

X

Let A denote the matrix of the operator L relative to the basis
e*, e (which is given) and B denote the matrix of L relative
to the basis cosh x, sinh x (which is to be found). By
definition of the functions cosh x and sinh x, the transition

. . . 1 1
matrix from cosh x, sinhx to e*, e ™™ is U = % ( )

1 -1
It follows that B = U~YAU. We obtain that

o= (1) (5 2)a6 ) -0 )



Problem 5. Let A=

O =
N =N
== o

(i) Find all eigenvalues of the matrix A.

The eigenvalues of A are roots of the characteristic equation
det(A — Al) = 0. We obtain that

1-XA 2 0

det(A—A)=| 1 1-x 1
0 21—\

=(1=X2P=-21-X)—-20-XN)=(1-X)(1-X)?>-4)
=(1-N(1-NN=2)((1=X)+2)=-(A=1)A+1)(A-3).

Hence the matrix A has three eigenvalues: —1, 1, and 3.



Problem 5. Let A=

O =
N =N
== o

(ii) For each eigenvalue of A, find an associated eigenvector.

An eigenvector v = (x,y,z) of the matrix A associated with
an eigenvalue X is a nonzero solution of the vector equation

1-X 2 0 X 0
(A=A v=0 1 1-Xx 1 y|l=10
0 2 1-2A z 0

To solve the equation, we convert the matrix A — Al to
reduced row echelon form.



First consider the case A\ = —1. The row reduction yields

2 20 110

A+l=112 1] =1 21

0 2 2 0 2 2
110 110 1 0 -1
1011} —=1011] —=(01 1
0 2 2 00O 00 0

Hence
x—z=0,
A+llv=0 — {y+z:0.

The general solution is x =t, y = —t, z=1t, where t € R.
In particular, v; = (1,—1,1) is an eigenvector of A associated

with the eigenvalue —1.



Secondly, consider the case A = 1. The row reduction yields

0 20 1 01 1 01 1 01
A-I=1 0 1] —=]10 2 0] =10 10| —=(0 1 0].
0 20 0 20 0 20 0 00

Hence

- x+z=0,
A-Illv=0 = {yzo‘
The general solution is x = —t, y =0, z=1t, where t € R.

In particular, v, = (—1,0,1) is an eigenvector of A associated
with the eigenvalue 1.



Finally, consider the case A = 3. The row reduction yields

-2 2 0 1 -1 0 1 -1
A-3] = 1 -2 1] =11 -2 1] —=(0 -1
0 2 =2 0 2 =2 0 2
1 -1 0 1 -1 0 1 0 -1
— 10 1 -1] — 10 1 -1] —10 1 -1
0 2 =2 0 0 0 00 0
Hence
x—z=0,
(A-3llv=0 — {y—z:O.

The general solutionis x =t, y =t, z=1t, where t € R.
In particular, v3 = (1,1,1) is an eigenvector of A associated
with the eigenvalue 3.

0
1
-2



20
Problem 5. Let A= 11
0 21

(iii) Is the matrix A diagonalizable? Explain.

The matrix A is diagonalizable, i.e., there exists a basis for R3
formed by its eigenvectors.

Namely, the vectors v; = (1,—-1,1), v, = (—1,0,1), and

vz = (1,1,1) are eigenvectors of the matrix A belonging to
distinct eigenvalues. Therefore these vectors are linearly
independent. It follows that vi, v, vs3 is a basis for R3.

Alternatively, the existence of a basis for R® consisting of
eigenvectors of A already follows from the fact that the matrix
A has three distinct eigenvalues.



Problem 5. Let A=

O
N =N
== o

(iv) Find all eigenvalues of the matrix A2.

Suppose that v is an eigenvector of the matrix A associated
with an eigenvalue A, thatis, v # 0 and Av = Av. Then

A%y = A(Av) = A(Av) = A(Av) = A\(Av) = Nv.

Therefore v is also an eigenvector of the matrix A? and the
associated eigenvalue is \2. We already know that the matrix
A has eigenvalues —1, 1, and 3. It follows that A? has
eigenvalues 1 and 9.

Since a 3x3 matrix can have up to 3 eigenvalues, we need an
additional argument to show that 1 and 9 are the only
eigenvalues of A%2. One reason is that the eigenvalue 1 has
multiplicity 2.



Problem 6. Find a linear polynomial which is the best least
squares fit to the following data:
x ||=2[-1]0]1)2
DIEIEIRHE

We are looking for a function f(x) = ¢; + cx, where ¢, &
are unknown coefficients. The data of the problem give rise
to an overdetermined system of linear equations in variables ¢;
and ¢:

(o} —2C2 = —3,
G — 6 = —2,
C1:1,
a+oc=2,
C1—|—2C2 =b.

This system is inconsistent.



We can represent the system as a matrix equation Ac =y,
where

1 -2 -3
1 -1 )
A=|1 o], c_(cl), y=| 1
11 c2 2
1 2 5

The least squares solution ¢ of the above system is a solution
of the normal system AT Ac = ATy:

1 -2 -3
(1 1111)1_(1)<c1)<1 1111)_5
2 -1012)f; [|\a -2 -1 0 1 2 5
1 2 5

= (n)E)- (o) = (82

Thus the function f(x) = % + 2x is the best least squares fit
to the above data among linear polynomials.






Problem 7. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).
(i) Find an orthonormal basis for V.

First we apply the Gram-Schmidt orthogonalization process to
vectors Xj, X, and obtain an orthogonal basis vq, v, for the
subspace V:

Vi = X1 = (]., ]., ]., 1),

Xo> - V71

4
vi=(1,0.3,0)~5(1,1,1,1) = (0,~1,2,~1).

Vo = Xo—
Vi -V

Then we normalize vectors vi,v, to obtain an orthonormal
basis wy,w, for V:

il =2 = wi =g =3(1,1,1,1)

HV2|| = \/6 = Wy = 2 = L(07 _1727 _1)

[[v2]

S






Problem 7. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(i) Find the distance from the vector y = (1,0,0,0) to the
subspaces V and V.

The vector y is uniquely decomposed as y = p + 0, where
p<V and o € V. Then p is the orthogonal projection of y
onto the subspace V while o is the orthogonal projection of y
onto the orthogonal complement V. Hence the distance
from y to V equals ||y — p|| = ||o]| and the distance from y
to V* equals |y —o|| = [p|.
Since vectors v; = (1,1,1,1) and v, = (0,—1,2,—1) form
an orthogonal basis for V/, it follows that
y- v y- vy 1 0 1
= ( )-

= Tvi v = (1,1,1,1
V]_'V]_Vl_‘_VQ'VzV2 4"1+6V2 4 T
V3

1
Then 0=y —p=(3.-1,~1-1), o] =5, [Ip] =

1
>



Problem 7. Let V be a subspace of R* spanned by the
vectors x; = (1,1,1,1) and x, = (1,0,3,0).

(ii) Find an orthonormal basis for the orthogonal complement
v+

Since the subspace V is spanned by vectors (1,1,1,1) and
(1,0,3,0), it is the row space of the matrix

1111
A= (1 0 3 0) ’
Then the orthogonal complement V* is the nullspace of A.

To find the nullspace, we convert the matrix A to reduced row
echelon form:

1111_>1030_>10 30
1030 1111 01 -2 1)°



Hence a vector (xi,xo, X3, x3) € R* belongs to V* if and only
if

X1

10 30 x| (0
01 -2 1 x3 | \0O
Xa
x1+3x3=0 x1 = —3x3
{x2—2x3—|—x4:0 — {x2:2x3—x4

The general solution of the system is (x, X2, X3, X3) =
= (—3t,2t — s, t,s) = t(—3,2,1,0) + s(0,—1,0,1), where
t,s e R.

It follows that V* is spanned by vectors x3 = (0, —1,0,1)
and x4 = (-3,2,1,0).



Since the vectors x3 = (0,—1,0,1) and x4 = (—3,2,1,0) are
linearly independent, they form a basis for the subspace V.

It remains to orthogonalize and normalize this basis:

V3 = X3 = (0, —].,0, ].),

Xg4 * V3 —2
= X4 — =(-3,2,1,0) — —(0,-1,0,1
Vy X4 Vs - Vs ( 777) 2(7 77)
=(-3,1,1,1),

HV3” = \/§ = W3 = ‘V3” = T(O 1 0 1)

HV4|| = \/E = 2\/§ = W4 = ::” = 2—\1/§(_37 ]-7 17 ]-)

Thus the vectors ws = %(O, —1,0,1) and
wy = 2—\1/§(—3, 1,1,1) form an orthonormal basis for V+.



