MATH 323
Linear Algebra

Lecture 24:

Inner products.
Orthogonality in inner product spaces.



Norm

The notion of norm generalizes the notion of length
of a vector in R".

Definition. Let V be a vector space. A function
a:V — R, usually denoted «a(x) = ||x||, is called
a norm on V if it has the following properties:

(i) ||x|| >0, ||x]] =0 only for x=0  (positivity)
(ii) |[rx|| = |r|||x]| forall reR (homogeneity)
(iii) Ix +yl| < [Ix]] + [yl (triangle inequality)

A normed vector space is a vector space endowed
with a norm. The norm defines a distance function
on the normed vector space: dist(x,y) = ||x —y||.



Examples. V =R", x = (x1,%,...,X,) € R".
o |Ix[oc = max(|xi], [xal, .., [xal)-

1/p

o |Ixll,= (PalP+ pelP+ -+ |xl?)"" p> 1.

Examples. V = Cla, b|, f:[a, b] — R.

o [l = max [F(x)]

b 1/p
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Inner product

The notion of inner product generalizes the notion
of dot product of vectors in R”.

Definition. Let V be a vector space. A function
f:V xV =R, usually denoted 5(x,y) = (x,y),
is called an inner product on V if it is positive,
symmetric, and bilinear. That is, if

(i) (x,x) >0, (x,x) =0 only for x = 0 (positivity)
(i) (x,y) ={y,x) (symmetry)
(i) (rx,y) = r(x,y) (homogeneity)
(iv) (x+y,z) =(x,z) + (y,z) (distributive law)
An inner product space is a vector space endowed
with an inner product.



Examples. V =R".

o (X,y) =X y=xy1+ X2+ "+ XY
o <X, y> = d1X1)/1 + d2X2)/2 + e ann_yny
where di,d>,...,d, > 0.

e (x,y) = (Dx)-(Dy),
where D is an invertible nx n matrix.

Remarks. (a) Invertibility of D is necessary to show
that (x,x) =0 = x=0.

(b) The second example is a particular case of the
third one when D = diag(di’?, dy'%, ..., di'?).



Problem. Find an inner product on R? such that
(el,e1> = 2, (eg,e2> = 3, and (el,e2> = —1,
where e; = (1,0), e; = (0,1).

Let x = (x1,%), ¥y = (y1,5) € R*.
Then x = xje1 + xxe2, y = y1€1 + yre€s.
Using bilinearity, we obtain

(x,y) = (xie1 + x0€2, y1€1 + yr€))
= x1(€1, y1€1 + y2€2) + Xa(€2, y1€1 + y2€2)
= x1y1(e1, e1) + x1y2(e1, @) + xoy1(e2, e1) + xay2(e2, €2)
= 2x1y1 — X1y2 — Xoy1 + 3x2)».

It remains to check that (x,x) >0 for x # 0.
Indeed, (x,x) =2x? — 2x1x2 + 3x3 = (x1 — %) + X7 + 2x3.



Example. 'V = M, ,(R), space of mxn matrices.
e (A B) = trace(ABT).
If A= (a;) and B = (b;), then (A B) = EZaU jj-

i=1j=

Examples. V = Cla, b].

b
o (fg) = [ Fg(x)

b
o (Fg) = [ FE(wlx) o

where w is bounded, piecewise continuous, and
w > 0 everywhere on [a, b].

w is called the weight function.



Theorem Suppose (x,y) is an inner product on a
vector space V. Then

(x,y)* < (x,x)(y,y) forall x,yeV.
Proof: Forany te R let vi =x+ty. Then
<Vt7 Vt> - <X + ty,X + ty> - <X7X + ty> + t<y,X + ty>
= (x,x) + t(x,y) + t{y, x) + t3(y,y).

Assume that y # 0 and let t = _(x,y)I Then
{y.y)

(x,y)°

Vi, Vi) = (X, X) + E(Y, X) = (X, X) — .

Since (v¢,vy) > 0, the desired inequality follows.
In the case y =0, we have (x,y) = (y,y) =0.



Cauchy-Schwarz Inequality:

(%, ¥)] < /(%) \/(y, ).

Corollary 1 |x-y| < |[|x||[|y|| for all x,y € R".
Equivalently, for all x;, y; € R,

i+ + X)) < OF 4+ +x) 0+ +y7).

Corollary 2 For any f,g € C|a, b],

</ab fx)g(x) dx) / [F(x)|? dx - / 1g(x)[? dx.



Norms induced by inner products

Theorem Suppose (x,y) is an inner product on a
vector space V. Then ||x|| = \/(x,x) is a norm.

Proof: Positivity is obvious. Homogeneity:

[rx|| = 1/ {rx, rx) = \/r2(x,x) = |r| /(x,x).
Triangle inequality (follows from Cauchy-Schwarz's):
Ix +yl* = (x+y,x+y)
= (%,%) + (X, y) + {y,x) + {y, y)
< (% %) + [y + [y, x)[ + (¥, ¥)
< [|x[1Z =+ 2[Ix[ flyll + [IylI* = (lIxI] + [ly[})*.




Examples. e The length of a vector in R”,
X[ = Vx§ 53+ 47,
is the norm induced by the dot product

XYy =Xy1t+Xy+ -+ XpYn-

b 1/2
e The norm ||f]j2 = (/ ]f(x)]zdx> on the

vector space C|a, b] is induced by the inner product

(f.g) = | F(g(x) o



Parallelogram Identity:
I+ ylI? + [[x = ylI> = 2[Ix[|* + 2[|y|?

Proof: |x+yl[> = (x+y, x+y) = (X, X)+(xX,y) +(y, X) +(y,y).
Similarly, [|x—y[|> = (x,x) — (x,y) — {y,x) + (y,y).
Then [[x+y[]? + [[x—y|* = 2(x,x) + 2(y, y) = 2||x||* + 2|ly|]*.

Remark. If a norm on a vector space fails to satisfy the
Parallelogram Identity, it follows that the norm is not induced

by any inner product.



Angle
Let V' be an inner product space with an inner
product (-, -) and the induced norm || - ||. Then

[ < x|yl

for all x,y € V' (the Cauchy-Schwarz inequality).
Therefore we can define the angle between nonzero
vectors in V' by

Z(x,y) = arccos

x| [yl
Then (x,y) = ||x] |ly]l cos Z(x,y).

In particular, vectors x and y are orthogonal
(denoted x L y) if (x,y)=0.



Orthogonal sets

Let V' be an inner product space with an inner
product (-,-) and the induced norm | - ||. We say
that vectors x and y are orthogonal if (x,y) = 0.

Definition. A nonempty set S C V' of nonzero
vectors is called an orthogonal set if all vectors in
S are mutually orthogonal. Thatis, 0 ¢ S and
(x,y) =0 forany x,y € S, x #y.

An orthogonal set S C V s called orthonormal if
|x][ =1 forany x € S.

Theorem Any orthogonal set is linearly
independent.



Example

o V=Cl-ma] (fg)= / " F(x)g(x) dx.

fi(x) =sinx, f(x) =sin2x, ..., fo(x) =sinnx, ...

T m if m=
(T ) :/_ sin(mx) sin(nx) dx = { 0 i :#Z’

Thus the set {fi, h, f5,...} is orthogonal but not
orthonormal.

It is orthonormal with respect to a scaled inner
product

(f.g) = %/W f(x)g(x) dx.

—T



Orthonormal basis

Suppose vi,V»,...,Vv, is an orthonormal basis for
an inner product space V.

Theorem 1 Let x = x;vy + xovp + - - - + x,v,, and
Y = yiV1 + yoVo + - - - + ypv,, where x;, y; € R.
Then

(') <X, Y> = X1y1 + Xoy2 + -+ + XpYn,

@) [l = /oF G+t

Theorem 2 For any vector x € V,

x = (x,v)vi + (X, vo)vp + - - - + (X, V)V,



Orthogonal projection

Theorem Let V be an inner product space and V; be a
finite-dimensional subspace of V. Then any vector x € V' is
uniquely represented as x = p + o, where p € V4 and

ol Vo.

The component p is called the orthogonal projection of the
vector x onto the subspace V.

Vo

The projection p is closer to x than any other vector in V.
Hence the distance from x to V; is [|[x — p|| = ||o]|.



Theorem Let V be an inner product space and V
be a finite-dimensional subspace of V. Then any
vector x € V' is uniquely represented as x = p + o,
where p € Vp and o L V.

Theorem Suppose vi,vy, ..., Vv, is an orthogonal
basis for the subspace V{. Then for any vector
x € V the orthogonal projection p onto Vj is given

Vn-



The Gram-Schmidt orthogonalization process

Let V be a vector space with an inner product.

Suppose Xi,X»,...,X, is a basis for V. Let
Vi = Xy,
Vo = X2 — e, V1>V1,
<V1, V]_>
Vs = X3 — (x3, V1>v1 _ <X37V2>v2'
<V1, V]_> <V2,V2>
V, = X, — %o, V1) — = X, Vi-1) n—1
(v1,v1) (Vn-1,Vn-1)

Then vy,vy, ..., v, is an orthogonal basis for V.



Normalization

Let V be a vector space with an inner product.

Suppose vi,V»,...,V, is an orthogonal basis for V.
V2 Vp
Let w; = Wy = —— W, = .
vy v [[vall
Then wy,ws, ...,w, is an orthonormal basis for V.

Theorem Any finite-dimensional vector space with
an inner product has an orthonormal basis.

Remark. An infinite-dimensional vector space with
an inner product may or may not have an
orthonormal basis.



Problem. Approximate the function f(x) = e*
on the interval [—1,1] by a quadratic polynomial.

The best approximation would be a polynomial p(x)
that minimizes the distance relative to the uniform
nhorm:

If = Plloc = max [f(x) — p(x)].

|x|<1

However there is no analytic way to find such a
polynomial. Instead, one can find a “least
squares” approximation that minimizes the integral
norm

I el = ( [ ()~ pLoP o) 7



The norm || - ||2 is induced by the inner product

(g, h) = /_ g(x)h(x) dx.

1

Therefore ||f — p||2 is minimal if p is the
orthogonal projection of the function f on the
subspace P3; of quadratic polynomials.

We should apply the Gram-Schmidt process to the
polynomials 1, x, x?, which form a basis for Ps.
This would yleld an orthogonal basis pg, p1, ps.
Then
(f, po) {f, p1) (f. p2)
X X) + p1(x) + P2(Xx).
S P P L A P L)




