Challenge #1 (50 pts., no deadline) Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function. Suppose that for any point $x \in \mathbb{R}$ there exists a derivative of f that vanishes at x:

$$f^{(n)}(x) = 0$$
 for some $n \ge 1$.

Prove that f is a polynomial.

Remark. A polynomial can be uniquely characterized as an infinitely differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{(n)}(x) \equiv 0$ (identically zero) for some $n \geq 1$.

Challenge #2 (5 pts., deadline: September 5) Construct a strict linear order \prec on the set \mathbb{C} of complex numbers that satisfies Axiom OA: $a \prec b$ implies $a + c \prec b + c$ for all $a, b, c \in \mathbb{C}$.

Challenge #3 (10 pts., deadline: September 5) Construct a strict linear order \prec on the set $\mathbb{R}(x)$ of rational functions in variable x with real coefficients that makes $\mathbb{R}(x)$ into an ordered field.

A set $E \subset \mathbb{R}$ is called an interval if with any two elements it contains all elements of \mathbb{R} that lie between them. To be precise, $a, b \in E$ and a < c < b imply $c \in E$ for all $a, b, c \in \mathbb{R}$.

Challenge #4 (10 pts., deadline: September 12) Prove the following statements.

(i) If *E* is a bounded interval that consists of more than one point, then there exist $a, b \in \mathbb{R}$, a < b, such that E = (a, b) or [a, b) or (a, b] or [a, b]. (ii) If *E* is an interval that is neither bounded above nor bounded below, then $E = \mathbb{R}$.

Challenge #5 (5 pts., deadline: September 19) Prove that the set $\mathbb{R} \times \mathbb{R}$ is of the same cardinality as \mathbb{R} .

Challenge #6 (10 pts., deadline: September 19) Let $\mathcal{F}(\mathbb{R})$ denote the set of all functions $f : \mathbb{R} \to \mathbb{R}$ and $C(\mathbb{R})$ denote the subset of continuous functions. Prove that the set $C(\mathbb{R})$ is of the same cardinality as \mathbb{R} while the set $\mathcal{F}(\mathbb{R})$ is not.

Challenge #7 (5 pts., deadline: September 26) Build a sequence $\{x_n\}$ of real numbers such that every real number is a limit point of $\{x_n\}$ (a limit point of a sequence is, by definition, the limit of a convergent subsequence).

Challenge #8 (10 pts., deadline: September 26) Let $\{F_n\}$ be the sequence of the Fibonacci numbers: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Prove that (as first observed by Kepler)

$$\lim_{n\to\infty}\frac{F_{n+1}}{F_n}=\frac{\sqrt{5}+1}{2}, \text{ the golden ratio.}$$

Challenge #9 (5 pts., deadline: October 3) Construct a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at all integer points and discontinuous at all noninteger points.

Challenge #10 (10 pts., deadline: October 3) Prove that there is no function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at all rational points and discontinuous at all irrational points.

Challenge #11 (10 pts., no deadline) Prove that the Riemann function

$$R(x) = \left\{egin{array}{ccc} 1/q & ext{if } x = p/q, \ ext{a reduced fraction, } q > 0, \ 0 & ext{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{array}
ight.$$

is not differentiable at any point.

Challenge #12 (10 pts., no deadline)

Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function such that f(x) > 0 for all $x \in \mathbb{Q}$ and f(x) = 0 for all $x \notin \mathbb{Q}$. Prove that f can not be differentiable at every irrational point.

Challenge #13 (20 pts., no deadline)

Let $R : \mathbb{R} \to \mathbb{R}$ be the Riemann function. Prove that the function R^3 is differentiable at some irrational points.

Challenge #14 (10 pts., deadline: November 7) Find a function $f : \mathbb{R} \to \mathbb{R}$ such that $f \in C^{\infty}(\mathbb{R})$, $0 \le f(x) \le 1$ for all $x \in \mathbb{R}$, f(x) = 1 if $|x| \le 1$, and f(x) = 0 if $|x| \ge 2$.

Challenge #15 (10 pts., deadline: November 7) Suppose that a function $g : \mathbb{R} \to \mathbb{R}$ is locally a polynomial, which means that for every $c \in \mathbb{R}$ there exists $\varepsilon > 0$ such that g coincides with a polynomial on the interval $(c - \varepsilon, c + \varepsilon)$. Prove that g is a polynomial.

Challenge #16 (10 pts., no deadline) Let $\{a_n\}$ be a sequence of distinct real numbers converging to a limit *b*. Suppose that a function *f* is infinitely differentiable at the point *b* and $f(a_n) = 0$ for all $n \in \mathbb{N}$. Prove that all derivatives of the function *f* at *b* are equal to 0.

Challenge #17 (40 pts., no deadline)

Prove Lebesgue's criterion for Riemann integrability: a function $f : [a, b] \to \mathbb{R}$ is Riemann integrable on the interval [a, b] if and only if f is bounded on [a, b] and continuous almost everywhere on [a, b].