Challenges

Challenge \#1 (50 pts., no deadline)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function. Suppose that for any point $x \in \mathbb{R}$ there exists a derivative of f that vanishes at x :

$$
f^{(n)}(x)=0 \text { for some } n \geq 1
$$

Prove that f is a polynomial.
Remark. A polynomial can be uniquely characterized as an infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{(n)}(x) \equiv 0$ (identically zero) for some $n \geq 1$.

Challenges

Challenge \#2 (5 pts., deadline: September 5)
Construct a strict linear order \prec on the set \mathbb{C} of complex numbers that satisfies Axiom OA:
$a \prec b$ implies $a+c \prec b+c$ for all $a, b, c \in \mathbb{C}$.

Challenge \#3 (10 pts., deadline: September 5) Construct a strict linear order \prec on the set $\mathbb{R}(x)$ of rational functions in variable x with real coefficients that makes $\mathbb{R}(x)$ into an ordered field.

Challenges

A set $E \subset \mathbb{R}$ is called an interval if with any two elements it contains all elements of \mathbb{R} that lie between them. To be precise, $a, b \in E$ and $a<c<b$ imply $c \in E$ for all $a, b, c \in \mathbb{R}$.

Challenge \#4 (10 pts., deadline: September 12) Prove the following statements.
(i) If E is a bounded interval that consists of more than one point, then there exist $a, b \in \mathbb{R}, a<b$, such that $E=(a, b)$ or $[a, b)$ or $(a, b]$ or $[a, b]$.
(ii) If E is an interval that is neither bounded above nor bounded below, then $E=\mathbb{R}$.

Challenges

Challenge \#5 (5 pts., deadline: September 19) Prove that the set $\mathbb{R} \times \mathbb{R}$ is of the same cardinality as \mathbb{R}.

Challenge \#6 (10 pts., deadline: September 19) Let $\mathcal{F}(\mathbb{R})$ denote the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $C(\mathbb{R})$ denote the subset of continuous functions. Prove that the set $C(\mathbb{R})$ is of the same cardinality as \mathbb{R} while the set $\mathcal{F}(\mathbb{R})$ is not.

Challenges

Challenge \#7 (5 pts., deadline: September 26) Build a sequence $\left\{x_{n}\right\}$ of real numbers such that every real number is a limit point of $\left\{x_{n}\right\}$ (a limit point of a sequence is, by definition, the limit of a convergent subsequence).

Challenge \#8 (10 pts., deadline: September 26) Let $\left\{F_{n}\right\}$ be the sequence of the Fibonacci numbers:
$F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.
Prove that (as first observed by Kepler)

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{\sqrt{5}+1}{2}, \text { the golden ratio. }
$$

Challenges

Challenge \#9 (5 pts., deadline: October 3)
Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at all integer points and discontinuous at all noninteger points.

Challenge \#10 (10 pts., deadline: October 3) Prove that there is no function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at all rational points and discontinuous at all irrational points.

Challenges

Challenge \#11 (10 pts., no deadline)
Prove that the Riemann function

$$
R(x)=\left\{\begin{array}{cl}
1 / q & \text { if } x=p / q, \text { a reduced fraction, } q>0, \\
0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

is not differentiable at any point.
Challenge \#12 (10 pts., no deadline)
Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(x)>0$ for all $x \in \mathbb{Q}$ and $f(x)=0$ for all $x \notin \mathbb{Q}$. Prove that f can not be differentiable at every irrational point.

Challenge \#13 (20 pts., no deadline)
Let $R: \mathbb{R} \rightarrow \mathbb{R}$ be the Riemann function. Prove that the function R^{3} is differentiable at some irrational points.

Challenges

Challenge \#14 (10 pts., deadline: November 7) Find a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in C^{\infty}(\mathbb{R})$, $0 \leq f(x) \leq 1$ for all $x \in \mathbb{R}, f(x)=1$ if $|x| \leq 1$, and $f(x)=0$ if $|x| \geq 2$.

Challenge \#15 (10 pts., deadline: November 7) Suppose that a function $g: \mathbb{R} \rightarrow \mathbb{R}$ is locally a polynomial, which means that for every $c \in \mathbb{R}$ there exists $\varepsilon>0$ such that g coincides with a polynomial on the interval $(c-\varepsilon, c+\varepsilon)$. Prove that g is a polynomial.

Challenges

Challenge \#16 (10 pts., no deadline)
Let $\left\{a_{n}\right\}$ be a sequence of distinct real numbers converging to a limit b. Suppose that a function f is infinitely differentiable at the point b and $f\left(a_{n}\right)=0$ for all $n \in \mathbb{N}$. Prove that all derivatives of the function f at b are equal to 0 .

Challenge \#17 (40 pts., no deadline)
Prove Lebesgue's criterion for Riemann integrability:
a function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on the interval $[a, b]$ if and only if f is bounded on $[a, b]$ and continuous almost everywhere on $[a, b]$.

