
MATH 409

Advanced Calculus I

Lecture 2:
Properties of an ordered field.

Absolute value.
Supremum and infimum.



Real line

The real line is a mathematical object rich with
structure. This includes:

• algebraic structure (4 arithmetic operations);
• ordering (for any three points, one is located

between the other two);
• metric structure (we can measure distances
between points);

• continuity (we can get from one point to
another in a continuous way).

The algebraic structure is formalised by the notion

of field. The ordering is formalised by the notion
of strict linear order.



Field

A field is a set F equipped with two operations, addition
F × F ∋ (a, b) 7→ a + b ∈ F and multiplication
F × F ∋ (a, b) 7→ a · b ∈ F , such that:

F1. a + b = b + a for all a, b ∈ F .
F2. (a + b) + c = a + (b + c) for all a, b, c ∈ F .
F3. There exists an element of F , denoted 0, such that
a + 0 = 0 + a = a for all a ∈ F .
F4. For any a ∈ F there exists an element of F , denoted −a,
such that a + (−a) = (−a) + a = 0.

F1′. a · b = b · a for all a, b ∈ F .
F2′. (a · b) · c = a · (b · c) for all a, b, c ∈ F .
F3′. There exists an element of F different from 0, denoted 1,
such that a · 1 = 1 · a = a for all a ∈ F .
F4′. For any a ∈ F , a 6= 0 there exists an element of F ,
denoted a−1, such that a · a−1 = a−1 · a = 1.

F5. a · (b + c) = (a · b) + (a · c) for all a, b, c ∈ F .



Alternative notation: a · b can be denoted ab (if it

does not create confusion).

Auxiliary operations: subtraction a−b = a+(−b)

and division a/b = a · b−1.

Examples of fields:

• Real numbers R.

• Complex numbers C.

• Rational numbers Q.

• R(x): rational functions f (x) in variable x with

real coefficients; f (x) = anx
n+an−1x

n−1+···+a1x+a0
bmxm+bm−1xm−1+···+b1x+b0

,

where ai , bj ∈ R and bm 6= 0.

• F2: field of two elements.



Basic properties of fields

• The zero 0 and the unity 1 are unique.

• For any a ∈ F , the negative −a is unique.

• For any a 6= 0, the inverse a−1 is unique.

• −(−a) = a for all a ∈ F .

• 0 · a = 0 for any a ∈ F .

• (−1) · a = −a for any a ∈ F .

• (−1) · (−1) = 1.

• ab = 0 implies that a = 0 or b = 0.

• (a − b)c = ac − bc for all a, b, c ∈ F .



Strict linear order

Definition. A strict order on a set X is a relation

on X , usually denoted ≺, that is antisymmetric and
transitive, namely,
• a ≺ b =⇒ not b ≺ a,

• a ≺ b and b ≺ c =⇒ a ≺ c .

The strict order ≺ is called linear (or total) if for

any a, b ∈ X we have either a ≺ b or b ≺ a or
a = b.

Auxiliary notation. a ≻ b means that b ≺ a.

By a � b we mean that a ≺ b or a = b.
By a ≺ b ≺ c we mean that a ≺ b and b ≺ c .



Ordered field

Definition. A field F with a strict linear order ≺ is
called an ordered field if this order and arithmetic

operations on F satisfy the following axioms:

OA. a ≺ b implies a + c ≺ b + c ,

OM1. a ≺ b and c ≻ 0 imply ac ≺ bc ,
OM2. a ≺ b and c ≺ 0 imply ac ≻ bc .

Two axioms OM1 and OM2 can be replaced by one:

OM. 0 ≺ a and 0 ≺ b imply 0 ≺ ab.

Theorem Three axioms OA, OM1, and OM2 are
equivalent to two axioms OA and OM.



OA. a ≺ b implies a + c ≺ b + c for all a, b, c ∈ F .
OM1. a ≺ b and c ≻ 0 imply ac ≺ bc for all a, b, c ∈ F .
OM2. a ≺ b and c ≺ 0 imply ac ≻ bc for all a, b, c ∈ F .
OM. 0 ≺ a and 0 ≺ b imply 0 ≺ ab for all a, b ∈ F .

Theorem Three axioms OA, OM1, and OM2 are equivalent
to two axioms OA and OM.

Proof: We have to prove that

OA ∧ OM1 ∧ OM2 ⇐⇒ OA ∧ OM,

where ∧ denotes the logical operation “and”. It is the same
as to prove that OA ∧ OM1 ∧ OM2 =⇒ OA ∧ OM and
OA ∧ OM =⇒ OA ∧ OM1 ∧ OM2.

[OA ∧ OM1 ∧ OM2 =⇒ OM]
Assume that 0 ≺ a and 0 ≺ b. Axiom OM1 implies that
0 · b ≺ ab. We already know that 0 · b = 0. Thus 0 ≺ ab.



OA. a ≺ b implies a + c ≺ b + c for all a, b, c ∈ F .
OM1. a ≺ b and c ≻ 0 imply ac ≺ bc for all a, b, c ∈ F .
OM2. a ≺ b and c ≺ 0 imply ac ≻ bc for all a, b, c ∈ F .
OM. 0 ≺ a and 0 ≺ b imply 0 ≺ ab for all a, b ∈ F .

Theorem Three axioms OA, OM1, and OM2 are equivalent
to two axioms OA and OM.

Proof:

[OA ∧ OM =⇒ OM1] Assume that a ≺ b and c ≻ 0.
By Axiom OA, a ≺ b implies a + (−a) ≺ b + (−a), that is,
0 ≺ b − a. By Axiom OM, 0 ≺ (b − a)c = bc − ac. Adding
ac to both sides of the latter relation, we get ac ≺ bc.

[OA ∧ OM =⇒ OM2] Assume that a ≺ b and c ≺ 0.
By Axiom OA, a ≺ b implies 0 ≺ b − a while c ≺ 0 implies
0 ≺ −c. By Axiom OM, we get 0 ≺ (b − a)(−c) = ac − bc.
Adding bc to both sides of the latter relation, we get bc ≺ ac.



Properties of ordered fields

• a ≻ 0 implies −a ≺ 0.

Subtracting a from both sides of the relation a ≻ 0, we get
0 ≻ −a.

• a ≺ b implies a − b ≺ 0.

Subtracting b from both sides of a ≺ b, we get
a − b ≺ b − b = 0.

• a ≺ b and c ≺ d imply a + c ≺ b + d .

Adding c to both sides of a ≺ b, we get a + c ≺ b + c.
Adding b to both sides of c ≺ d , we get b + c ≺ b + d .
By transitivity of the order, a + c ≺ b + d .

• 0 ≺ a ≺ b and 0 ≺ c ≺ d implies ac ≺ bd .



Properties of ordered fields

• a ≻ 0 and b ≺ 0 imply ab ≺ 0.

b ≺ 0 implies −b ≻ 0. Then a(−b) ≻ 0. Note that
a(−b) = a(−1 · b) = (−1)(ab) = −ab. Hence −ab ≻ 0 so
that ab ≺ 0.

• a ≺ 0 and b ≺ 0 imply ab ≻ 0.

It follows that −a ≻ 0 and −b ≻ 0. Then (−a)(−b) ≻ 0.
But (−a)(−b) = (−1 · a)(−1 · b) = (−1)(−1)ab = 1ab = ab.

• a 6= 0 implies a2 ≻ 0 (where a2 = a · a).
Since a 6= 0, we have either a ≻ 0 or a ≺ 0. In the first
case, a2 ≻ 0 due to Axiom OM. In the second case, a2 ≻ 0
by the previous property.



Properties of ordered fields

• −1 ≺ 0 ≺ 1.

Since 1 6= 0 and a2 ≻ 0 for any a 6= 0, we obtain
0 ≺ 12 = 1. Then −1 ≺ 0.

• 0 ≺ a implies 0 ≺ a−1.

We know that either 0 ≺ a−1 or a−1 ≺ 0 or a−1 = 0.
However a−1 ≺ 0 would imply that 1 = aa−1 ≺ 0, a
contradiction. Further, a−1 = 0 would imply that
1 = aa−1 = a · 0 = 0, another contradiction. Hence 0 ≺ a−1.

• 0 ≺ a ≺ b implies a−1 ≻ b−1.

Since 0 ≺ a and 0 ≺ b, it follows that 0 ≺ a−1 and
0 ≺ b−1. Multiplying both sides of a ≺ b by a−1b−1, we get
b−1 ≺ a−1.



Which fields can be ordered?

• R is an ordered field with respect to the order <.

• Q is also an ordered field with respect to <.

• The field F2 of two elements cannot be ordered.
In any ordered field, −1 ≺ 0 ≺ 1, in particular, −1 ≺ 1.
However in the field F2 we have −1 = 1.

• The field C cannot be ordered.
In any ordered field, −1 ≺ 0 and a2 ≻ 0 for all a 6= 0.
However in the field C we have i2 = −1, where
i =

√
−1 6= 0.

• The field R(x) of rational functions is an ordered
field with respect to some strict linear order.



Absolute value

Definition. The absolute value (or modulus) of a
real number a, denoted |a|, is defined as follows:

|a| =
{

a if a ≥ 0,

−a if a < 0.

Properties of the absolute value:

• |a| ≥ 0;

• |a| = 0 if and only if a = 0;

• | − a| = |a|;
• If M > 0, then |a| < M ⇐⇒ −M < a < M ;

• |ab| = |a| · |b|;
• |a + b| ≤ |a|+ |b|.



Supremum and infimum

Definition. Let E ⊂ R be a nonempty set and M be a real
number. We say that M is an upper bound of the set E if
a ≤ M for all a ∈ E . Similarly, M is a lower bound of the
set E if a ≥ M for all a ∈ E .

We say that the set E is bounded above if it admits an
upper bound and bounded below if it admits a lower bound.
The set E is called bounded if it is bounded above and below.

A real number M is called the supremum (or the least upper
bound) of the set E and denoted supE if (i) M is an upper
bound of E and (ii) M ≤ M+ for any upper bound M+ of E .
Similarly, M is called the infimum (or the greatest lower
bound) of the set E and denoted inf E if (i) M is a lower
bound of E and (ii) M ≥ M− for any lower bound M− of E .

Completeness Axiom. If a nonempty subset E ⊂ R is
bounded above, then E has a supremum.


