MATH 409 Advanced Calculus I Lecture 2: Properties of an ordered field. Absolute value. Supremum and infimum.

Real line

The real line is a mathematical object rich with structure. This includes:

- algebraic structure (4 arithmetic operations);
- ordering (for any three points, one is located between the other two);
- metric structure (we can measure distances between points);
- continuity (we can get from one point to another in a continuous way).

The algebraic structure is formalised by the notion of **field**. The ordering is formalised by the notion of **strict linear order**.

Field

A field is a set F equipped with two operations, addition $F \times F \ni (a, b) \mapsto a + b \in F$ and multiplication $F \times F \ni (a, b) \mapsto a \cdot b \in F$, such that: F1. a + b = b + a for all $a, b \in F$. F2. (a + b) + c = a + (b + c) for all $a, b, c \in F$. F3. There exists an element of F, denoted 0, such that a + 0 = 0 + a = a for all $a \in F$. F4. For any $a \in F$ there exists an element of F, denoted -a, such that a + (-a) = (-a) + a = 0. F1'. $a \cdot b = b \cdot a$ for all $a, b \in F$. F2'. $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in F$. F3'. There exists an element of F different from 0, denoted 1, such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in F$. F4'. For any $a \in F$, $a \neq 0$ there exists an element of F, denoted a^{-1} , such that $a \cdot a^{-1} = a^{-1} \cdot a = 1$. F5. $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ for all $a, b, c \in F$.

Alternative notation: $a \cdot b$ can be denoted ab (if it does not create confusion).

Auxiliary operations: subtraction a-b = a + (-b)and division $a/b = a \cdot b^{-1}$.

Examples of fields:

- Real numbers \mathbb{R} .
- \bullet Complex numbers $\mathbb{C}.$
- Rational numbers \mathbb{Q} .

• $\mathbb{R}(x)$: rational functions f(x) in variable x with real coefficients; $f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$, where $a_i, b_j \in \mathbb{R}$ and $b_m \neq 0$.

• \mathbb{F}_2 : field of two elements.

Basic properties of fields

- The zero 0 and the unity 1 are unique.
- For any $a \in F$, the negative -a is unique.
- For any $a \neq 0$, the inverse a^{-1} is unique.

•
$$-(-a) = a$$
 for all $a \in F$.

•
$$0 \cdot a = 0$$
 for any $a \in F$.

•
$$(-1) \cdot a = -a$$
 for any $a \in F$.

•
$$(-1) \cdot (-1) = 1.$$

• ab = 0 implies that a = 0 or b = 0.

•
$$(a-b)c = ac - bc$$
 for all $a, b, c \in F$

Strict linear order

Definition. A strict order on a set X is a relation on X, usually denoted \prec , that is antisymmetric and transitive, namely,

•
$$a \prec b \implies \text{not } b \prec a$$
,

• $a \prec b$ and $b \prec c \implies a \prec c$.

The strict order \prec is called **linear** (or **total**) if for any $a, b \in X$ we have either $a \prec b$ or $b \prec a$ or a = b.

Auxiliary notation. $a \succ b$ means that $b \prec a$. By $a \preceq b$ we mean that $a \prec b$ or a = b. By $a \prec b \prec c$ we mean that $a \prec b$ and $b \prec c$.

Ordered field

Definition. A field F with a strict linear order \prec is called an **ordered field** if this order and arithmetic operations on F satisfy the following axioms: OA. $a \prec b$ implies $a + c \prec b + c$, OM1. $a \prec b$ and $c \succ 0$ imply $ac \prec bc$, OM2. $a \prec b$ and $c \prec 0$ imply $ac \succ bc$. Two axioms OM1 and OM2 can be replaced by one:

OM. $0 \prec a$ and $0 \prec b$ imply $0 \prec ab$.

Theorem Three axioms OA, OM1, and OM2 are equivalent to two axioms OA and OM.

OA. $a \prec b$ implies $a + c \prec b + c$ for all $a, b, c \in F$. OM1. $a \prec b$ and $c \succ 0$ imply $ac \prec bc$ for all $a, b, c \in F$. OM2. $a \prec b$ and $c \prec 0$ imply $ac \succ bc$ for all $a, b, c \in F$. OM. $0 \prec a$ and $0 \prec b$ imply $0 \prec ab$ for all $a, b \in F$.

Theorem Three axioms OA, OM1, and OM2 are equivalent to two axioms OA and OM.

Proof: We have to prove that

 $\mathsf{OA} \land \mathsf{OM1} \land \mathsf{OM2} \iff \mathsf{OA} \land \mathsf{OM},$

where \wedge denotes the logical operation "and". It is the same as to prove that OA \wedge OM1 \wedge OM2 \implies OA \wedge OM and OA \wedge OM \implies OA \wedge OM1 \wedge OM2.

[OA \land **OM1** \land **OM2** \implies **OM]** Assume that $0 \prec a$ and $0 \prec b$. Axiom OM1 implies that $0 \cdot b \prec ab$. We already know that $0 \cdot b = 0$. Thus $0 \prec ab$. OA. $a \prec b$ implies $a + c \prec b + c$ for all $a, b, c \in F$. OM1. $a \prec b$ and $c \succ 0$ imply $ac \prec bc$ for all $a, b, c \in F$. OM2. $a \prec b$ and $c \prec 0$ imply $ac \succ bc$ for all $a, b, c \in F$. OM. $0 \prec a$ and $0 \prec b$ imply $0 \prec ab$ for all $a, b \in F$.

Theorem Three axioms OA, OM1, and OM2 are equivalent to two axioms OA and OM.

Proof:

[OA \land **OM** \implies **OM1]** Assume that $a \prec b$ and $c \succ 0$. By Axiom OA, $a \prec b$ implies $a + (-a) \prec b + (-a)$, that is, $0 \prec b - a$. By Axiom OM, $0 \prec (b - a)c = bc - ac$. Adding ac to both sides of the latter relation, we get $ac \prec bc$.

[OA \land **OM** \implies **OM2]** Assume that $a \prec b$ and $c \prec 0$. By Axiom OA, $a \prec b$ implies $0 \prec b - a$ while $c \prec 0$ implies $0 \prec -c$. By Axiom OM, we get $0 \prec (b-a)(-c) = ac - bc$. Adding *bc* to both sides of the latter relation, we get $bc \prec ac$.

Properties of ordered fields

•
$$a \succ 0$$
 implies $-a \prec 0$.

Subtracting *a* from both sides of the relation $a \succ 0$, we get $0 \succ -a$.

• $a \prec b$ implies $a - b \prec 0$.

Subtracting *b* from both sides of $a \prec b$, we get $a - b \prec b - b = 0$.

• $a \prec b$ and $c \prec d$ imply $a + c \prec b + d$.

Adding c to both sides of $a \prec b$, we get $a + c \prec b + c$. Adding b to both sides of $c \prec d$, we get $b + c \prec b + d$. By transitivity of the order, $a + c \prec b + d$.

• $0 \prec a \prec b$ and $0 \prec c \prec d$ implies $ac \prec bd$.

Properties of ordered fields

• $a \succ 0$ and $b \prec 0$ imply $ab \prec 0$. $b \prec 0$ implies $-b \succ 0$. Then $a(-b) \succ 0$. Note that $a(-b) = a(-1 \cdot b) = (-1)(ab) = -ab$. Hence $-ab \succ 0$ so that $ab \prec 0$.

Properties of ordered fields

• $-1 \prec 0 \prec 1$.

Since $1 \neq 0$ and $a^2 \succ 0$ for any $a \neq 0$, we obtain $0 \prec 1^2 = 1$. Then $-1 \prec 0$.

• $0 \prec a$ implies $0 \prec a^{-1}$.

We know that either $0 \prec a^{-1}$ or $a^{-1} \prec 0$ or $a^{-1} = 0$. However $a^{-1} \prec 0$ would imply that $1 = aa^{-1} \prec 0$, a contradiction. Further, $a^{-1} = 0$ would imply that $1 = aa^{-1} = a \cdot 0 = 0$, another contradiction. Hence $0 \prec a^{-1}$.

• $0 \prec a \prec b$ implies $a^{-1} \succ b^{-1}$.

Since $0 \prec a$ and $0 \prec b$, it follows that $0 \prec a^{-1}$ and $0 \prec b^{-1}$. Multiplying both sides of $a \prec b$ by $a^{-1}b^{-1}$, we get $b^{-1} \prec a^{-1}$.

Which fields can be ordered?

- \mathbb{R} is an ordered field with respect to the order <.
- \mathbb{Q} is also an ordered field with respect to <.

• The field \mathbb{F}_2 of two elements cannot be ordered. In any ordered field, $-1 \prec 0 \prec 1$, in particular, $-1 \prec 1$. However in the field \mathbb{F}_2 we have -1 = 1.

• The field \mathbb{C} cannot be ordered. In any ordered field, $-1 \prec 0$ and $a^2 \succ 0$ for all $a \neq 0$. However in the field \mathbb{C} we have $i^2 = -1$, where $i = \sqrt{-1} \neq 0$.

• The field $\mathbb{R}(x)$ of rational functions is an ordered field with respect to some strict linear order.

Absolute value

Definition. The **absolute value** (or **modulus**) of a real number a, denoted |a|, is defined as follows:

$$|a| = egin{cases} a & ext{if} \ a \geq 0, \ -a & ext{if} \ a < 0. \end{cases}$$

Properties of the absolute value:

•
$$|a| = 0$$
 if and only if $a = 0$;

•
$$|-a| = |a|;$$

- If M > 0, then $|a| < M \iff -M < a < M$;
- $|ab| = |a| \cdot |b|;$
- $|a+b| \le |a|+|b|.$

Supremum and infimum

Definition. Let $E \subset \mathbb{R}$ be a nonempty set and M be a real number. We say that M is an **upper bound** of the set E if $a \leq M$ for all $a \in E$. Similarly, M is a **lower bound** of the set E if $a \geq M$ for all $a \in E$.

We say that the set E is **bounded above** if it admits an upper bound and **bounded below** if it admits a lower bound. The set E is called **bounded** if it is bounded above and below.

A real number M is called the **supremum** (or the **least upper bound**) of the set E and denoted sup E if (i) M is an upper bound of E and (ii) $M \le M_+$ for any upper bound M_+ of E. Similarly, M is called the **infimum** (or the **greatest lower bound**) of the set E and denoted inf E if (i) M is a lower bound of E and (ii) $M \ge M_-$ for any lower bound M_- of E.

Completeness Axiom. If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then *E* has a supremum.