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Lecture 2:
Properties of an ordered field.
Absolute value.
Supremum and infimum.



Real line

The real line is a mathematical object rich with
structure. This includes:

e algebraic structure (4 arithmetic operations);
e ordering (for any three points, one is located
between the other two);

e metric structure (we can measure distances
between points);

e continuity (we can get from one point to
another in a continuous way).

The algebraic structure is formalised by the notion
of field. The ordering is formalised by the notion
of strict linear order.



Field

A field is a set F equipped with two operations, addition
F x F>(a b)— a+bec F and multiplication
F x F>(ab)—a-beF, such that:

F1. a+ b=b+a forall a,be F.

F2. (a+b)+c=a+(b+c) forall a,b,ceF.

F3. There exists an element of F, denoted 0, such that
a+0=0+a=a forall a€ F.

F4. For any a € F there exists an element of F, denoted —a,
such that a+ (—a)=(—a)+a=0.

F1'. a-b=b-a forall a,be F.

F2'. (a-b)-c=a-(b-c) forall a,b,c € F.

F3’. There exists an element of F different from 0, denoted 1,
suchthat a-1=1-a=2a forall a€ F.

F4'. For any a € F, a# 0 there exists an element of F,
denoted a7 !, such that a-al=a1-a=1.

F5. a-(b+c)=(a-b)+(a-c) forall a,b,ceF.



Alternative notation: a- b can be denoted ab (if it
does not create confusion).

Auxiliary operations: subtraction a—b = a+ (—b)
and division a/b=a- bl

Examples of fields:
e Real numbers R.
e Complex numbers C.
e Rational numbers Q.

e R(x): rational functions f(x) in variable x with

- - n n_l DRy
real coefficients; f(x) = por et

where a;, b; € R and by, # 0.

e [F5: field of two elements.




Basic properties of fields

e The zero 0 and the unity 1 are unique.
e Forany a € F, the negative —a is unique.

e Forany a# 0, the inverse a=!

IS unique.
e —(—a)=a forall a€F.

e 0-a=0 forany a€ F.

e (—1)-a= —a forany a€ F.

e (-1)-(-1)=1.

e ab=0 impliesthat a=0 or b=0.

e (a—b)c=ac— bc forall a,b,ceF.



Strict linear order

Definition. A strict order on a set X is a relation
on X, usually denoted <, that is antisymmetric and
transitive, namely,

e a<b — not b 3,

e a<band b<c — a<c.

The strict order < is called linear (or total) if for

any a,b € X we have either a < b or b<a or
a=b.

Auxiliary notation. a > b means that b < a.
By a < b we mean that a < b or a = b.
By a<b < c we meanthat a< b and b < c.



Ordered field

Definition. A field F with a strict linear order < is
called an ordered field if this order and arithmetic
operations on F satisfy the following axioms:

OA. a< b implies a+c < b+ c,

OM1. a< b and ¢ > 0 imply ac < bc,

OM2. a< b and ¢ <0 imply ac > bc.

Two axioms OM1 and OM2 can be replaced by one:
OM. 0<a and 0 < b imply 0 < ab.

Theorem Three axioms OA, OM1, and OM2 are
equivalent to two axioms OA and OM.



OA. a < b implies a+c<b+c forall a,b,ce F.
OM1. a< b and ¢ > 0 imply ac < bc forall a,b,c € F.
OM2. a< b and ¢ <0 imply ac > bc forall a,b,c € F.
OM. 0<a and 0 < b imply 0 < ab forall a,b € F.

Theorem Three axioms OA, OM1, and OM2 are equivalent
to two axioms OA and OM.

Proof: We have to prove that
OA A OM1 A OM2 <= OA A OM,
where A denotes the logical operation “and”. It is the same

as to prove that OA A OM1 A OM2 — OA A OM and
OA AN OM = OA A OM1 A OM2.

[OA A OM1 A OM2 — OM]
Assume that 0 < a and 0 < b. Axiom OM1 implies that
0-b < ab. We already know that 0-b=0. Thus 0 < ab.



OA. a < b implies a+c<b+c forall a,b,ce F.
OM1. a< b and ¢ > 0 imply ac < bc forall a,b,c € F.
OM2. a< b and ¢ <0 imply ac > bc forall a,b,c € F.
OM. 0<a and 0 < b imply 0 < ab forall a,b € F.

Theorem Three axioms OA, OM1, and OM2 are equivalent
to two axioms OA and OM.

Proof:

[OA A OM = OM1] Assume that a < b and c > 0.
By Axiom OA, a < b implies a+ (—a) < b+ (—a), that s,
0 < b—a. ByAxiom OM, 0 < (b— a)c = bc — ac. Adding
ac to both sides of the latter relation, we get ac < bc.

[OA A OM — OM2] Assume that a < b and ¢ < 0.

By Axiom OA, a < b implies 0 < b — a while ¢ <0 implies
0 < —c. By Axiom OM, we get 0 < (b — a)(—c) = ac — bc.
Adding bc to both sides of the latter relation, we get bc < ac.



Properties of ordered fields

e a> 0 implies —a < 0.

Subtracting a from both sides of the relation a > 0, we get
0> —a.

e a<b implies a— b <0.

Subtracting b from both sides of a < b, we get
a—b<b—b=0.

e a<band c<d imply a+c<b+d.

Adding c to both sides of a < b, we get a+c < b+ c.
Adding b to both sides of ¢ < d, weget b+ c < b+ d.
By transitivity of the order, a+c < b+ d.

e 0 <a<band 0<c<d implies ac < bd.



Properties of ordered fields

e a>0and b<0 imply ab < 0.

b <0 implies —b > 0. Then a(—b) > 0. Note that
a(—b) = a(—1-b) =(—1)(ab) = —ab. Hence —ab > 0 so
that ab < 0.

e 2a<0 and b <0 imply ab > 0.
It follows that —a > 0 and —b > 0. Then (—a)(—b) > 0.
But (—a)(—b) =(—1-a)(—1-b) =(—1)(—1)ab = lab = ab.
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e a#0 implies 2> = 0 (where 2> =a- a).

Since a # 0, we have either a > 0 or a < 0. In the first
case, a°> > 0 due to Axiom OM. In the second case, a*> > 0
by the previous property.



Properties of ordered fields

o —1<0<1.

Since 1 # 0 and a? = 0 for any a # 0, we obtain
0<1°=1. Then —1<0.

e 0<a implies 0 < al.

We know that either 0 < a=! or a1 <0 or a~! = 0.
However a=! < 0 would imply that 1 =aa=! <0, a
contradiction. Further, a=! =0 would imply that

1=aa!=a-0=0, another contradiction. Hence 0 < a~!.

e 0<a=<b implies at = b1

Since 0 < a and 0 < b, it follows that 0 < a—! and
0 < b~1. Multiplying both sides of a < b by a='h7!, we get
b=t < at



Which fields can be ordered?

e R is an ordered field with respect to the order <.
e (Q is also an ordered field with respect to <.

e The field F, of two elements cannot be ordered.

In any ordered field, —1 <0 < 1, in particular, —1 < 1.
However in the field F5 we have —1 = 1.

e The field C cannot be ordered.

In any ordered field, —1 < 0 and a® = 0 for all a # 0.
However in the field C we have i> = —1, where

i—V=T1+£0.

e The field R(x) of rational functions is an ordered
field with respect to some strict linear order.



Absolute value

Definition. The absolute value (or modulus) of a
real number a, denoted |a|, is defined as follows:

aif a>0,
|a] =

—a if a<0.

Properties of the absolute value:
e [a| =2 0;
la| =0 if and only if a=0;

| —al = al;

If M >0, then |a| <M <— —M < a< M,
|ab| = |a - [b];

|a+ b| < [a] + |b].



Supremum and infimum

Definition. Let E C R be a nonempty set and M be a real

number. We say that M is an upper bound of the set E if
a<M forall a€ E. Similarly, M is a lower bound of the
set Eif a> M forall a€ E.

We say that the set E is bounded above if it admits an
upper bound and bounded below if it admits a lower bound.
The set E is called bounded if it is bounded above and below.

A real number M is called the supremum (or the least upper
bound) of the set E and denoted sup E if (i) M is an upper
bound of E and (ii) M < M, for any upper bound M, of E.
Similarly, M is called the infimum (or the greatest lower
bound) of the set E and denoted inf E if (i) M is a lower
bound of E and (ii) M > M_ for any lower bound M_ of E.

Completeness Axiom. If a nonempty subset E C R is
bounded above, then E has a supremum.



