MATH 409
 Advanced Calculus I

Lecture 2:
Properties of an ordered field.
Absolute value.
Supremum and infimum.

Real line

The real line is a mathematical object rich with structure. This includes:

- algebraic structure (4 arithmetic operations);
- ordering (for any three points, one is located between the other two);
- metric structure (we can measure distances between points);
- continuity (we can get from one point to another in a continuous way).

The algebraic structure is formalised by the notion of field. The ordering is formalised by the notion of strict linear order.

Field

A field is a set F equipped with two operations, addition $F \times F \ni(a, b) \mapsto a+b \in F$ and multiplication
$F \times F \ni(a, b) \mapsto a \cdot b \in F$, such that:
F1. $a+b=b+a$ for all $a, b \in F$.
F2. $(a+b)+c=a+(b+c)$ for all $a, b, c \in F$.
F3. There exists an element of F, denoted 0 , such that
$a+0=0+a=a$ for all $a \in F$.
F4. For any $a \in F$ there exists an element of F, denoted $-a$, such that $a+(-a)=(-a)+a=0$.
F1'. $a \cdot b=b \cdot a$ for all $a, b \in F$.
F2'. $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ for all $a, b, c \in F$.
F3'. There exists an element of F different from 0 , denoted 1 , such that $a \cdot 1=1 \cdot a=a$ for all $a \in F$.
F4'. For any $a \in F, a \neq 0$ there exists an element of F, denoted a^{-1}, such that $a \cdot a^{-1}=a^{-1} \cdot a=1$.
F5. $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ for all $a, b, c \in F$.

Alternative notation: $a \cdot b$ can be denoted $a b$ (if it does not create confusion).
Auxiliary operations: subtraction $a-b=a+(-b)$ and division $a / b=a \cdot b^{-1}$.

Examples of fields:

- Real numbers \mathbb{R}.
- Complex numbers \mathbb{C}.
- Rational numbers \mathbb{Q}.
- $\mathbb{R}(x)$: rational functions $f(x)$ in variable x with real coefficients; $f(x)=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}$, where $a_{i}, b_{j} \in \mathbb{R}$ and $b_{m} \neq 0$.
- \mathbb{F}_{2} : field of two elements.

Basic properties of fields

- The zero 0 and the unity 1 are unique.
- For any $a \in F$, the negative $-a$ is unique.
- For any $a \neq 0$, the inverse a^{-1} is unique.
- $-(-a)=a$ for all $a \in F$.
- $0 \cdot a=0$ for any $a \in F$.
- $(-1) \cdot a=-a$ for any $a \in F$.
- $(-1) \cdot(-1)=1$.
- $a b=0$ implies that $a=0$ or $b=0$.
- $(a-b) c=a c-b c$ for all $a, b, c \in F$.

Strict linear order

Definition. A strict order on a set X is a relation on X, usually denoted \prec, that is antisymmetric and transitive, namely,

- $a \prec b \Longrightarrow$ not $b \prec a$,
- $a \prec b$ and $b \prec c \Longrightarrow a \prec c$.

The strict order \prec is called linear (or total) if for any $a, b \in X$ we have either $a \prec b$ or $b \prec a$ or $a=b$.

Auxiliary notation. $a \succ b$ means that $b \prec a$.
By $a \preceq b$ we mean that $a \prec b$ or $a=b$.
By $a \prec b \prec c$ we mean that $a \prec b$ and $b \prec c$.

Ordered field

Definition. A field F with a strict linear order \prec is called an ordered field if this order and arithmetic operations on F satisfy the following axioms:
OA. $a \prec b$ implies $a+c \prec b+c$,
OM1. $a \prec b$ and $c \succ 0$ imply $a c \prec b c$,
OM2. $a \prec b$ and $c \prec 0$ imply $a c \succ b c$.
Two axioms OM1 and OM2 can be replaced by one:
OM. $0 \prec a$ and $0 \prec b$ imply $0 \prec a b$.
Theorem Three axioms OA, OM1, and OM2 are equivalent to two axioms OA and OM .

OA. $a \prec b$ implies $a+c \prec b+c$ for all $a, b, c \in F$.
OM1. $a \prec b$ and $c \succ 0$ imply $a c \prec b c$ for all $a, b, c \in F$. OM2. $a \prec b$ and $c \prec 0$ imply $a c \succ b c$ for all $a, b, c \in F$. OM. $0 \prec a$ and $0 \prec b$ imply $0 \prec a b$ for all $a, b \in F$.

Theorem Three axioms OA, OM1, and OM2 are equivalent to two axioms OA and OM.

Proof: We have to prove that

$$
\mathrm{OA} \wedge \mathrm{OM} 1 \wedge \mathrm{OM} 2 \Longleftrightarrow \mathrm{OA} \wedge \mathrm{OM}
$$

where \wedge denotes the logical operation "and". It is the same as to prove that $\mathrm{OA} \wedge \mathrm{OM} 1 \wedge \mathrm{OM} 2 \Longrightarrow \mathrm{OA} \wedge \mathrm{OM}$ and $\mathrm{OA} \wedge \mathrm{OM} \Longrightarrow \mathrm{OA} \wedge \mathrm{OM} 1 \wedge \mathrm{OM} 2$.
[OA $\wedge \mathrm{OM} 1 \wedge \mathrm{OM} 2 \Longrightarrow \mathrm{OM}]$
Assume that $0 \prec a$ and $0 \prec b$. Axiom OM1 implies that $0 \cdot b \prec a b$. We already know that $0 \cdot b=0$. Thus $0 \prec a b$.

OA. $a \prec b$ implies $a+c \prec b+c$ for all $a, b, c \in F$.
OM1. $a \prec b$ and $c \succ 0$ imply $a c \prec b c$ for all $a, b, c \in F$. OM2. $a \prec b$ and $c \prec 0$ imply $a c \succ b c$ for all $a, b, c \in F$. OM. $0 \prec a$ and $0 \prec b$ imply $0 \prec a b$ for all $a, b \in F$.

Theorem Three axioms OA, OM1, and OM2 are equivalent to two axioms OA and OM.

Proof:
[$\mathrm{OA} \wedge \mathbf{O M} \Longrightarrow \mathbf{O M 1]}$ Assume that $a \prec b$ and $c \succ 0$. By Axiom OA, $a \prec b$ implies $a+(-a) \prec b+(-a)$, that is, $0 \prec b-a$. By Axiom OM, $0 \prec(b-a) c=b c-a c$. Adding $a c$ to both sides of the latter relation, we get $a c \prec b c$.
[$\mathrm{OA} \wedge \mathbf{O M} \Longrightarrow \mathbf{O M} 2$] Assume that $a \prec b$ and $c \prec 0$. By Axiom OA, $a \prec b$ implies $0 \prec b-a$ while $c \prec 0$ implies $0 \prec-c$. By Axiom OM, we get $0 \prec(b-a)(-c)=a c-b c$. Adding $b c$ to both sides of the latter relation, we get $b c \prec a c$.

Properties of ordered fields

- $a \succ 0$ implies $-a \prec 0$.

Subtracting a from both sides of the relation $a \succ 0$, we get $0 \succ-$ a.

- $a \prec b$ implies $a-b \prec 0$.

Subtracting b from both sides of $a \prec b$, we get $a-b \prec b-b=0$.

- $a \prec b$ and $c \prec d$ imply $a+c \prec b+d$.

Adding c to both sides of $a \prec b$, we get $a+c \prec b+c$. Adding b to both sides of $c \prec d$, we get $b+c \prec b+d$. By transitivity of the order, $a+c \prec b+d$.

- $0 \prec a \prec b$ and $0 \prec c \prec d$ implies $a c \prec b d$.

Properties of ordered fields

- $a \succ 0$ and $b \prec 0$ imply $a b \prec 0$.
$b \prec 0$ implies $-b \succ 0$. Then $a(-b) \succ 0$. Note that $a(-b)=a(-1 \cdot b)=(-1)(a b)=-a b$. Hence $-a b \succ 0$ so that $a b \prec 0$.
- $a \prec 0$ and $b \prec 0$ imply $a b \succ 0$.

It follows that $-a \succ 0$ and $-b \succ 0$. Then $(-a)(-b) \succ 0$. But $(-a)(-b)=(-1 \cdot a)(-1 \cdot b)=(-1)(-1) a b=1 a b=a b$.

- $a \neq 0$ implies $a^{2} \succ 0$ (where $a^{2}=a \cdot a$).

Since $a \neq 0$, we have either $a \succ 0$ or $a \prec 0$. In the first case, $a^{2} \succ 0$ due to Axiom OM. In the second case, $a^{2} \succ 0$ by the previous property.

Properties of ordered fields

- $-1 \prec 0 \prec 1$.

Since $1 \neq 0$ and $a^{2} \succ 0$ for any $a \neq 0$, we obtain $0 \prec 1^{2}=1$. Then $-1 \prec 0$.

- $0 \prec a$ implies $0 \prec a^{-1}$.

We know that either $0 \prec a^{-1}$ or $a^{-1} \prec 0$ or $a^{-1}=0$. However $a^{-1} \prec 0$ would imply that $1=a a^{-1} \prec 0$, a contradiction. Further, $a^{-1}=0$ would imply that $1=a a^{-1}=a \cdot 0=0$, another contradiction. Hence $0 \prec a^{-1}$.

- $0 \prec a \prec b$ implies $a^{-1} \succ b^{-1}$.

Since $0 \prec a$ and $0 \prec b$, it follows that $0 \prec a^{-1}$ and $0 \prec b^{-1}$. Multiplying both sides of $a \prec b$ by $a^{-1} b^{-1}$, we get $b^{-1} \prec a^{-1}$.

Which fields can be ordered?

- \mathbb{R} is an ordered field with respect to the order $<$.
- \mathbb{Q} is also an ordered field with respect to $<$.
- The field \mathbb{F}_{2} of two elements cannot be ordered.

In any ordered field, $-1 \prec 0 \prec 1$, in particular, $-1 \prec 1$. However in the field \mathbb{F}_{2} we have $-1=1$.

- The field \mathbb{C} cannot be ordered.

In any ordered field, $-1 \prec 0$ and $a^{2} \succ 0$ for all $a \neq 0$. However in the field \mathbb{C} we have $i^{2}=-1$, where $i=\sqrt{-1} \neq 0$.

- The field $\mathbb{R}(x)$ of rational functions is an ordered field with respect to some strict linear order.

Absolute value

Definition. The absolute value (or modulus) of a real number a, denoted $|a|$, is defined as follows:
$|a|=\left\{\begin{array}{r}a \text { if } a \geq 0, \\ -a \text { if } a<0 .\end{array}\right.$
Properties of the absolute value:

- $|a| \geq 0$;
- $|a|=0$ if and only if $a=0$;
- $|-a|=|a|$;
- If $M>0$, then $|a|<M \Longleftrightarrow-M<a<M$;
- $|a b|=|a| \cdot|b|$;
- $|a+b| \leq|a|+|b|$.

Supremum and infimum

Definition. Let $E \subset \mathbb{R}$ be a nonempty set and M be a real number. We say that M is an upper bound of the set E if $a \leq M$ for all $a \in E$. Similarly, M is a lower bound of the set E if $a \geq M$ for all $a \in E$.
We say that the set E is bounded above if it admits an upper bound and bounded below if it admits a lower bound. The set E is called bounded if it is bounded above and below.

A real number M is called the supremum (or the least upper bound) of the set E and denoted $\sup E$ if (i) M is an upper bound of E and (ii) $M \leq M_{+}$for any upper bound M_{+}of E. Similarly, M is called the infimum (or the greatest lower bound) of the set E and denoted $\inf E$ if (i) M is a lower bound of E and (ii) $M \geq M_{-}$for any lower bound M_{-}of E.

Completeness Axiom. If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then E has a supremum.

