MATH 409
 Advanced Calculus I

Lecture 3:
 Metric spaces.
 Completeness axiom.

Existence of square roots.

Absolute value

Definition. The absolute value (or modulus) of a real number a, denoted $|a|$, is defined as follows:
$|a|=\left\{\begin{array}{r}a \text { if } a \geq 0, \\ -a \text { if } a<0 .\end{array}\right.$
Properties of the absolute value:

- $|a| \geq 0$;
- $|a|=0$ if and only if $a=0$;
- $|-a|=|a|$;
- If $M>0$, then $|a|<M \Longleftrightarrow-M<a<M$;
- $|a b|=|a| \cdot|b|$;
- $|a+b| \leq|a|+|b|$.

Metric space

Definition. Given a nonempty set X, a metric (or distance function) on X is a function $d: X \times X \rightarrow \mathbb{R}$ that satisfies the following conditions:

- (positivity) $d(x, y) \geq 0$ for all $x, y \in X$; moreover, $d(x, y)=0$ if and only if $x=y$;
- (symmetry) $d(x, y)=d(y, x)$ for all $x, y \in X$;
- (triangle inequality) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a metric space.

Theorem The function $d(x, y)=|y-x|$ is a metric on the real line \mathbb{R}.

Proof: We have $|y-x| \geq 0$ for all $x, y \in \mathbb{R}$. Moreover, $|y-x|=0$ only if $y-x=0$, which is equivalent to $x=y$. This proves positivity.

Symmetry follows since $x-y=-(y-x)$ and $|-a|=|a|$ for all $a \in \mathbb{R}$.
Finally, $d(x, y)=|y-x|=|(y-z)+(z-x)|$ $\leq|y-z|+|z-x|=d(z, y)+d(x, z)$.

Other examples of metric spaces

- Euclidean space
$X=\mathbb{R}^{n}, d(\mathbf{x}, \mathbf{y})=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots+\left(y_{n}-x_{n}\right)^{2}}$.
- Normed vector space
X : vector space with a norm $\|\cdot\|, d(\mathbf{x}, \mathbf{y})=\|\mathbf{y}-\mathbf{x}\|$.
- Discrete metric space
X : any nonempty set, $d(x, y)=1$ if $x \neq y$ and $d(x, y)=0$ if $x=y$.
- Space of sequences
X : set of all infinite words $x=x_{1} x_{2} \ldots$ over a finite alphabet; $d(x, y)=2^{-n}$ if $x_{i}=y_{i}$ for $1 \leq i \leq n$ while $x_{n+1} \neq y_{n+1}$, $d(x, y)=0$ if $x_{i}=y_{i}$ for all $i \geq 1$.

Supremum and infimum

Definition. Let $E \subset \mathbb{R}$ be a nonempty set and M be a real number. We say that M is an upper bound of the set E if $a \leq M$ for all $a \in E$. Similarly, M is a lower bound of the set E if $a \geq M$ for all $a \in E$.
We say that the set E is bounded above if it admits an upper bound and bounded below if it admits a lower bound. The set E is called bounded if it is bounded above and below.

A real number M is called the supremum (or the least upper bound) of the set E and denoted $\sup E$ if (i) M is an upper bound of E and (ii) $M \leq M_{+}$for any upper bound M_{+}of E.
Similarly, M is called the infimum (or the greatest lower bound) of the set E and denoted $\inf E$ if (i) M is a lower bound of E and (ii) $M \geq M_{-}$for any lower bound M_{-}of E.

Axioms of real numbers

Definition. The set \mathbb{R} of real numbers is a set satisfying the following postulates:
Postulate 1. \mathbb{R} is a field.
Postulate 2. There is a strict linear order $<$ on \mathbb{R} that makes it into an ordered field.

Postulate 3 (Completeness Axiom).

If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then E has a supremum.

Theorem 1 Suppose X and Y are nonempty subsets of \mathbb{R} such that $a \leq b$ for all $a \in X$ and $b \in Y$. Then there exists $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in X$ and $c \leq b$ for all $b \in Y$.

Proof: The set X is bounded above as any element of Y is an upper bound of X. By Completeness Axiom, sup X exists. We have $a \leq \sup X$ for all $a \in X$ since $\sup X$ is an upper bound of X. Besides, $\sup X \leq b$ for any $b \in Y$ since b is an upper bound of X while sup X is the least upper bound.

Theorem 2 If a nonempty subset $E \subset \mathbb{R}$ is bounded below, then E has an infimum.
Proof: Let X denote the set of all lower bounds of E. Then $a \leq b$ for all $a \in X$ and $b \in E$. Since E is bounded below, the set X is not empty. By Theorem 1 , there exists $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in X$ and $c \leq b$ for all $b \in E$. That is, c is a lower bound of E and an upper bound of X. It follows that $c=\inf E$.

Natural, integer, and rational numbers

Postulate 1 guarantees that \mathbb{R} contains numbers 0 and 1 . Then we can define natural numbers $2=1+1,3=2+1$, $4=3+1$, and so on... It was proved in the previous lecture that $0<1$. Repeatedly adding 1 to both sides of this inequality, we obtain $0<1<2<3<\ldots$ In particular, all these numbers are distinct.

However the entire set of natural numbers can only be defined in an implicit way.
Definition. A set $E \subset \mathbb{R}$ is called inductive if $1 \in E$ and, for any real number $x, x \in E$ implies $x+1 \in E$. The set \mathbb{N} of natural numbers is the smallest inductive subset of \mathbb{R} (namely, it is the intersection of all inductive subsets of \mathbb{R}).
The set of integers is defined as $\mathbb{Z}=-\mathbb{N} \cup\{0\} \cup \mathbb{N}$. The set of rationals is defined as $\mathbb{Q}=\{m / n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$.

Archimedean Principle

Theorem (Archimedean Principle) For any real number $\varepsilon>0$ there exists a natural number n such that $n \varepsilon>1$.
Remark. Archimedean Principle means that \mathbb{R} contains no infinitesimal (i.e., infinitely small) numbers other than 0 .
Proof: In the case $\varepsilon>1$, we can take $n=1$. Now assume $\varepsilon \leq 1$. Let E be the set of all natural numbers n such that $n \varepsilon \leq 1$. Observe that E is nonempty $(1 \in E)$ and bounded above ($1 / \varepsilon$ is an upper bound). By Completeness Axiom, $m=\sup E$ exists. By definition of $\sup E$, there exists $n \in E$ such that $n>m-1 / 2$ (as otherwise $m-1 / 2$ would be an upper bound for E). Then $n+1$ is a natural number and $n+1>m+1 / 2>m$. It follows that $n+1$ is not in E. Consequently, $(n+1) \varepsilon>1$.

Corollary For any $a, b>0$ there exists a natural number n such that na $>b$.

Density of rational numbers

Theorem For any real numbers a and $b, a<b$, there exists a rational number ξ such that $a<\xi<b$.
Proof: By Archimedean Principle, there exists a natural number n such that $n(b-a)>1$. Let E be the set of all integers m such that $m / n<b$. Observe that E is bounded above ($n b$ is an upper bound). Let us show that the set E is not empty. In the case $b \geq 0$ it is obvious as $-1 \in E$. In the case $b<0$, we have $-b>0$. By Archimedean Principle, there exists a natural number m such that $m(-n b)^{-1}>1$. Then $-m / n<b$ so that $-m \in E$.
By Completeness Axiom, $k=\sup E$ exists. By definition of $\sup E$, there exists $m \in E$ such that $m>k-1 / 2$. Then $m+1$ is an integer and $m+1>k+1 / 2>k$, which implies that $m+1$ is not in E. Therefore $m / n<b \leq(m+1) / n$. Consequently, $m / n \geq b-1 / n>b-(b-a)=a$. Thus $a<m / n<b$.

Existence of square roots

Theorem For any $a>0$ there exists a unique number $r>0$ (denoted \sqrt{a}) such that $r^{2}=a$.

We begin the proof with the following simple lemmas.
Lemma 1 Suppose r and t are positive numbers. Then $r^{2}<t^{2}$ if and only if $r<t$.
Lemma 2 Suppose r and t are positive numbers. Then $r^{2}=t^{2}$ if and only if $r=t$.
Proof of Lemmas 1 and 2: By linearity of the order on \mathbb{R}, we have either $r<t$ or $r>t$ or $r=t$. Since $r, t>0$, we obtain that $r<t \Longrightarrow r^{2}<t^{2}$ and $r>t \Longrightarrow r^{2}>t^{2}$. Besides, $r=t \Longrightarrow r^{2}=t^{2}$. We conclude that $r^{2}<t^{2}$ if and only if $r<t$. Also, $r^{2}=t^{2}$ if and only if $r=t$.

Lemma 2 immediately implies uniqueness of \sqrt{a}.

To prove existence of the square root \sqrt{a}, let us consider a set $E=\left\{x>0 \mid x^{2}<a\right\}$. We shall show that $r=\sup E$ is the desired number. First we need to verify that sup E exists. By Completeness Axiom, it is enough to check that the set E is nonempty and bounded above. Moreover, Lemma 1 implies that any $b>0$ satisfying $a \leq b^{2}$ is an upper bound of E.
Consider three cases: $a>1, a<1$, and $a=1$.
If $a>1$ then $1 \in E$. Also, $a<a^{2}$ so that a is an upper bound of E. If $a<1$ then $a^{2}<a$ so that $a \in E$. Also, 1 is an upper bound for E. If $a=1$, then $1 / 2 \in E$ and 1 is an upper bound of E.
Thus $r=\sup E$ exists. Clearly, $r>0$. We claim that $r^{2}=a$. Assume the contrary. Then $r^{2}<a$ or $r^{2}>a$. In the 1st case, there is no $t>0$ such that $r^{2}<t^{2}<a$. In the 2 nd case, there is no $t>0$ such that $a<t^{2}<r^{2}$. Now we get a contradiction once the following lemma is proved:

Lemma 3 Suppose a and r are positive real numbers and $a \neq r^{2}$. Then there exists $t>0$ such that t^{2} lies between a and r^{2}, i.e., $a<t^{2}<r^{2}$ or $r^{2}<t^{2}<a$.

Proof: First we consider a special case when $0<a<1$ and $r=1$. Let us show that $t=(1+a) / 2$ is a desired number in this case. Indeed, $0<a<1$ implies that $1<1+a<2$, then $0<t<1$ and $t^{2}<t<1$. Further, $4\left(t^{2}-a\right)=$ $=(2 t)^{2}-4 a=(1+a)^{2}-4 a=\left(1+2 a+a^{2}\right)-4 a=1-2 a+a^{2}$ $=(1-a)^{2}>0$ since $1-a>0$. Hence $a<t^{2}<1=r^{2}$.
Next we consider a more general case $a<r^{2}$. In this case, $0<a r^{-2}<1$, where $r^{-2}=\left(r^{2}\right)^{-1}$, which is also $\left(r^{-1}\right)^{2}$. By the above there exists $t>0$ such that $a r^{-2}<t^{2}<1$. Then $t r$ is a positive number and $a<t^{2} r^{2}=(t r)^{2}<r^{2}$. It remains to consider the case $r^{2}<a$. In this case, $0<a^{-1}<r^{-2}=\left(r^{-1}\right)^{2}$. By the above there exists $t>0$ such that $a^{-1}<t^{2}<r^{-2}$. Then t^{-1} is a positive number and $r^{2}<t^{-2}=\left(t^{-1}\right)^{2}<a$.

