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Advanced Calculus I

Lecture 3:
Metric spaces.

Completeness axiom.
Existence of square roots.



Absolute value

Definition. The absolute value (or modulus) of a
real number a, denoted |a|, is defined as follows:

|a| =
{

a if a ≥ 0,

−a if a < 0.

Properties of the absolute value:

• |a| ≥ 0;

• |a| = 0 if and only if a = 0;

• | − a| = |a|;
• If M > 0, then |a| < M ⇐⇒ −M < a < M ;

• |ab| = |a| · |b|;
• |a + b| ≤ |a|+ |b|.



Metric space

Definition. Given a nonempty set X , a metric (or distance
function) on X is a function d : X × X → R that satisfies
the following conditions:

• (positivity) d(x , y ) ≥ 0 for all x , y ∈ X ; moreover,
d(x , y ) = 0 if and only if x = y ;

• (symmetry) d(x , y ) = d(y , x) for all x , y ∈ X ;

• (triangle inequality) d(x , y ) ≤ d(x , z) + d(z , y ) for all
x , y , z ∈ X .
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A set endowed with a metric is called a metric space.



Theorem The function d(x , y) = |y − x | is a
metric on the real line R.

Proof: We have |y − x | ≥ 0 for all x , y ∈ R.

Moreover, |y − x | = 0 only if y − x = 0, which is
equivalent to x = y . This proves positivity.

Symmetry follows since x − y = −(y − x) and
| − a| = |a| for all a ∈ R.

Finally, d(x , y) = |y − x | = |(y − z) + (z − x)|
≤ |y − z |+ |z − x | = d(z , y) + d(x , z).



Other examples of metric spaces

• Euclidean space

X = Rn, d(x, y) =
√

(y1− x1)2+ (y2− x2)2+ · · ·+ (yn − xn)2.

• Normed vector space

X : vector space with a norm ‖ · ‖, d(x, y) = ‖y− x‖.

• Discrete metric space

X : any nonempty set, d(x , y ) = 1 if x 6= y and d(x , y ) = 0
if x = y .

• Space of sequences

X : set of all infinite words x = x1x2 . . . over a finite alphabet;
d(x , y ) = 2−n if xi = yi for 1 ≤ i ≤ n while xn+1 6= yn+1,
d(x , y ) = 0 if xi = yi for all i ≥ 1.



Supremum and infimum

Definition. Let E ⊂ R be a nonempty set and M be a real
number. We say that M is an upper bound of the set E if
a ≤ M for all a ∈ E . Similarly, M is a lower bound of the
set E if a ≥ M for all a ∈ E .

We say that the set E is bounded above if it admits an
upper bound and bounded below if it admits a lower bound.
The set E is called bounded if it is bounded above and below.

A real number M is called the supremum (or the least upper
bound) of the set E and denoted supE if (i) M is an upper
bound of E and (ii) M ≤ M+ for any upper bound M+ of E .

Similarly, M is called the infimum (or the greatest lower
bound) of the set E and denoted inf E if (i) M is a lower
bound of E and (ii) M ≥ M

−
for any lower bound M

−
of E .



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R

that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E ⊂ R is bounded above,
then E has a supremum.



Theorem 1 Suppose X and Y are nonempty subsets of R
such that a ≤ b for all a ∈ X and b ∈ Y . Then there exists
c ∈ R such that a ≤ c for all a ∈ X and c ≤ b for all b ∈ Y .

Proof: The set X is bounded above as any element of Y is
an upper bound of X . By Completeness Axiom, supX exists.
We have a ≤ supX for all a ∈ X since supX is an upper
bound of X . Besides, supX ≤ b for any b ∈ Y since b is an
upper bound of X while supX is the least upper bound.

Theorem 2 If a nonempty subset E ⊂ R is bounded below,
then E has an infimum.

Proof: Let X denote the set of all lower bounds of E . Then
a ≤ b for all a ∈ X and b ∈ E . Since E is bounded below,
the set X is not empty. By Theorem 1, there exists c ∈ R

such that a ≤ c for all a ∈ X and c ≤ b for all b ∈ E .
That is, c is a lower bound of E and an upper bound of X .
It follows that c = inf E .



Natural, integer, and rational numbers

Postulate 1 guarantees that R contains numbers 0 and 1.
Then we can define natural numbers 2 = 1 + 1, 3 = 2 + 1,
4 = 3 + 1, and so on. . . It was proved in the previous lecture
that 0 < 1. Repeatedly adding 1 to both sides of this
inequality, we obtain 0 < 1 < 2 < 3 < . . . In particular, all
these numbers are distinct.

However the entire set of natural numbers can only be defined
in an implicit way.

Definition. A set E ⊂ R is called inductive if 1 ∈ E and,
for any real number x , x ∈ E implies x + 1 ∈ E . The set N
of natural numbers is the smallest inductive subset of R
(namely, it is the intersection of all inductive subsets of R).

The set of integers is defined as Z = −N ∪ {0} ∪ N.
The set of rationals is defined as Q={m/n | m ∈ Z, n ∈ N}.



Archimedean Principle

Theorem (Archimedean Principle) For any real number
ε > 0 there exists a natural number n such that nε > 1.

Remark. Archimedean Principle means that R contains no
infinitesimal (i.e., infinitely small) numbers other than 0.

Proof: In the case ε > 1, we can take n = 1. Now assume
ε ≤ 1. Let E be the set of all natural numbers n such that
nε ≤ 1. Observe that E is nonempty (1 ∈ E ) and bounded
above (1/ε is an upper bound). By Completeness Axiom,
m = supE exists. By definition of supE , there exists n ∈ E

such that n > m − 1/2 (as otherwise m − 1/2 would be an
upper bound for E ). Then n + 1 is a natural number and
n + 1 > m + 1/2 > m. It follows that n + 1 is not in E .
Consequently, (n + 1)ε > 1.

Corollary For any a, b > 0 there exists a natural number n
such that na > b.



Density of rational numbers

Theorem For any real numbers a and b, a < b, there exists
a rational number ξ such that a < ξ < b.

Proof: By Archimedean Principle, there exists a natural
number n such that n(b − a) > 1. Let E be the set of all
integers m such that m/n < b. Observe that E is bounded
above (nb is an upper bound). Let us show that the set E is
not empty. In the case b ≥ 0 it is obvious as −1 ∈ E . In
the case b < 0, we have −b > 0. By Archimedean Principle,
there exists a natural number m such that m(−nb)−1 > 1.
Then −m/n < b so that −m ∈ E .

By Completeness Axiom, k = supE exists. By definition of
supE , there exists m ∈ E such that m > k − 1/2. Then
m + 1 is an integer and m + 1 > k + 1/2 > k, which implies
that m + 1 is not in E . Therefore m/n < b ≤ (m + 1)/n.
Consequently, m/n ≥ b − 1/n > b − (b − a) = a. Thus
a < m/n < b.



Existence of square roots

Theorem For any a > 0 there exists a unique

number r > 0 (denoted
√
a) such that r 2 = a.

We begin the proof with the following simple lemmas.

Lemma 1 Suppose r and t are positive numbers. Then
r 2 < t2 if and only if r < t.

Lemma 2 Suppose r and t are positive numbers. Then
r 2 = t2 if and only if r = t.

Proof of Lemmas 1 and 2: By linearity of the order on R, we
have either r < t or r > t or r = t. Since r , t > 0, we
obtain that r < t =⇒ r 2 < t2 and r > t =⇒ r 2 > t2.
Besides, r = t =⇒ r 2 = t2. We conclude that r 2 < t2 if
and only if r < t. Also, r 2 = t2 if and only if r = t.

Lemma 2 immediately implies uniqueness of
√
a.



To prove existence of the square root
√
a, let us consider a set

E = {x > 0 | x2 < a}. We shall show that r = supE is the
desired number. First we need to verify that supE exists. By
Completeness Axiom, it is enough to check that the set E is
nonempty and bounded above. Moreover, Lemma 1 implies
that any b > 0 satisfying a ≤ b2 is an upper bound of E .

Consider three cases: a > 1, a < 1, and a = 1.

If a > 1 then 1 ∈ E . Also, a < a2 so that a is an upper
bound of E . If a < 1 then a2 < a so that a ∈ E . Also, 1 is
an upper bound for E . If a = 1, then 1/2 ∈ E and 1 is an
upper bound of E .

Thus r = supE exists. Clearly, r > 0. We claim that
r 2 = a. Assume the contrary. Then r 2 < a or r 2 > a.
In the 1st case, there is no t > 0 such that r 2 < t2 < a.
In the 2nd case, there is no t > 0 such that a < t2 < r 2.
Now we get a contradiction once the following lemma is
proved:



Lemma 3 Suppose a and r are positive real numbers and
a 6= r 2. Then there exists t > 0 such that t2 lies between a

and r 2, i.e., a < t2 < r 2 or r 2 < t2 < a.

Proof: First we consider a special case when 0 < a < 1 and
r = 1. Let us show that t = (1 + a)/2 is a desired number in
this case. Indeed, 0 < a < 1 implies that 1 < 1 + a < 2,
then 0 < t < 1 and t2 < t < 1. Further, 4(t2 − a) =
= (2t)2 − 4a = (1+a)2 − 4a = (1+2a+a2)− 4a = 1− 2a+ a2

= (1− a)2 > 0 since 1− a > 0. Hence a < t2 < 1 = r 2.

Next we consider a more general case a < r 2. In this case,
0 < ar−2 < 1, where r−2 = (r 2)−1, which is also (r−1)2.
By the above there exists t > 0 such that ar−2 < t2 < 1.
Then tr is a positive number and a < t2r 2 = (tr)2 < r 2.

It remains to consider the case r 2 < a. In this case,
0 < a−1 < r−2 = (r−1)2. By the above there exists t > 0
such that a−1 < t2 < r−2. Then t−1 is a positive number and
r 2 < t−2 = (t−1)2 < a.


