MATH 409 Advanced Calculus I Lecture 3: Metric spaces. Completeness axiom. Existence of square roots.

Absolute value

Definition. The **absolute value** (or **modulus**) of a real number a, denoted |a|, is defined as follows:

$$|a| = egin{cases} a & ext{if} \ a \geq 0, \ -a & ext{if} \ a < 0. \end{cases}$$

Properties of the absolute value:

•
$$|a| = 0$$
 if and only if $a = 0$;

•
$$|-a| = |a|;$$

- If M > 0, then $|a| < M \iff -M < a < M$;
- $|ab| = |a| \cdot |b|;$
- $|a+b| \leq |a|+|b|$.

Metric space

Definition. Given a nonempty set X, a **metric** (or **distance function**) on X is a function $d : X \times X \to \mathbb{R}$ that satisfies the following conditions:

• (positivity) $d(x, y) \ge 0$ for all $x, y \in X$; moreover, d(x, y) = 0 if and only if x = y;

• (symmetry) d(x,y) = d(y,x) for all $x, y \in X$;

• (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a **metric space**.

Theorem The function d(x, y) = |y - x| is a metric on the real line \mathbb{R} .

Proof: We have $|y - x| \ge 0$ for all $x, y \in \mathbb{R}$. Moreover, |y - x| = 0 only if y - x = 0, which is equivalent to x = y. This proves positivity.

Symmetry follows since x - y = -(y - x) and |-a| = |a| for all $a \in \mathbb{R}$.

Finally, d(x, y) = |y - x| = |(y - z) + (z - x)| $\leq |y - z| + |z - x| = d(z, y) + d(x, z).$

Other examples of metric spaces

• Euclidean space

$$X = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \cdots + (y_n - x_n)^2}$.

• Normed vector space

X: vector space with a norm $\|\cdot\|$, $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\|$.

• Discrete metric space

X: any nonempty set, d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y.

• Space of sequences

X: set of all infinite words $x = x_1x_2...$ over a finite alphabet; $d(x, y) = 2^{-n}$ if $x_i = y_i$ for $1 \le i \le n$ while $x_{n+1} \ne y_{n+1}$, d(x, y) = 0 if $x_i = y_i$ for all $i \ge 1$.

Supremum and infimum

Definition. Let $E \subset \mathbb{R}$ be a nonempty set and M be a real number. We say that M is an **upper bound** of the set E if $a \leq M$ for all $a \in E$. Similarly, M is a **lower bound** of the set E if $a \geq M$ for all $a \in E$.

We say that the set E is **bounded above** if it admits an upper bound and **bounded below** if it admits a lower bound. The set E is called **bounded** if it is bounded above and below.

A real number M is called the **supremum** (or the **least upper bound**) of the set E and denoted sup E if (i) M is an upper bound of E and (ii) $M \le M_+$ for any upper bound M_+ of E. Similarly, M is called the **infimum** (or the **greatest lower bound**) of the set E and denoted inf E if (i) M is a lower bound of E and (ii) $M \ge M_-$ for any lower bound M_- of E.

Axioms of real numbers

Definition. The set \mathbb{R} of real numbers is a set satisfying the following postulates:

Postulate 1. \mathbb{R} is a field.

Postulate 2. There is a strict linear order < on \mathbb{R} that makes it into an ordered field.

Postulate 3 (Completeness Axiom). If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then *E* has a supremum. **Theorem 1** Suppose X and Y are nonempty subsets of \mathbb{R} such that $a \leq b$ for all $a \in X$ and $b \in Y$. Then there exists $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in X$ and $c \leq b$ for all $b \in Y$.

Proof: The set X is bounded above as any element of Y is an upper bound of X. By Completeness Axiom, sup X exists. We have $a \leq \sup X$ for all $a \in X$ since $\sup X$ is an upper bound of X. Besides, $\sup X \leq b$ for any $b \in Y$ since b is an upper bound of X while sup X is the least upper bound.

Theorem 2 If a nonempty subset $E \subset \mathbb{R}$ is bounded below, then *E* has an infimum.

Proof: Let X denote the set of all lower bounds of E. Then $a \le b$ for all $a \in X$ and $b \in E$. Since E is bounded below, the set X is not empty. By Theorem 1, there exists $c \in \mathbb{R}$ such that $a \le c$ for all $a \in X$ and $c \le b$ for all $b \in E$. That is, c is a lower bound of E and an upper bound of X. It follows that $c = \inf E$.

Natural, integer, and rational numbers

Postulate 1 guarantees that $\mathbb R$ contains numbers 0 and 1. Then we can define natural numbers $2=1+1,\ 3=2+1,\ 4=3+1,\ and$ so on... It was proved in the previous lecture that 0<1. Repeatedly adding 1 to both sides of this inequality, we obtain $0<1<2<3<\ldots$ In particular, all these numbers are distinct.

However the entire set of natural numbers can only be defined in an implicit way.

Definition. A set $E \subset \mathbb{R}$ is called **inductive** if $1 \in E$ and, for any real number $x, x \in E$ implies $x + 1 \in E$. The set \mathbb{N} of **natural numbers** is the smallest inductive subset of \mathbb{R} (namely, it is the intersection of all inductive subsets of \mathbb{R}).

The set of **integers** is defined as $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$. The set of **rationals** is defined as $\mathbb{Q} = \{m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$.

Archimedean Principle

Theorem (Archimedean Principle) For any real number $\varepsilon > 0$ there exists a natural number *n* such that $n\varepsilon > 1$.

Remark. Archimedean Principle means that \mathbb{R} contains no **infinitesimal** (i.e., infinitely small) numbers other than 0.

Proof: In the case $\varepsilon > 1$, we can take n = 1. Now assume $\varepsilon \leq 1$. Let E be the set of all natural numbers n such that $n\varepsilon \leq 1$. Observe that E is nonempty $(1 \in E)$ and bounded above $(1/\varepsilon$ is an upper bound). By Completeness Axiom, $m = \sup E$ exists. By definition of $\sup E$, there exists $n \in E$ such that n > m - 1/2 (as otherwise m - 1/2 would be an upper bound for E). Then n + 1 is a natural number and n + 1 > m + 1/2 > m. It follows that n + 1 is not in E. Consequently, $(n + 1)\varepsilon > 1$.

Corollary For any a, b > 0 there exists a natural number *n* such that na > b.

Density of rational numbers

Theorem For any real numbers *a* and *b*, a < b, there exists a rational number ξ such that $a < \xi < b$.

Proof: By Archimedean Principle, there exists a natural number *n* such that n(b-a) > 1. Let *E* be the set of all integers *m* such that m/n < b. Observe that *E* is bounded above (*nb* is an upper bound). Let us show that the set *E* is not empty. In the case $b \ge 0$ it is obvious as $-1 \in E$. In the case b < 0, we have -b > 0. By Archimedean Principle, there exists a natural number *m* such that $m(-nb)^{-1} > 1$. Then -m/n < b so that $-m \in E$.

By Completeness Axiom, $k = \sup E$ exists. By definition of $\sup E$, there exists $m \in E$ such that m > k - 1/2. Then m + 1 is an integer and m + 1 > k + 1/2 > k, which implies that m + 1 is not in E. Therefore $m/n < b \le (m + 1)/n$. Consequently, $m/n \ge b - 1/n > b - (b - a) = a$. Thus a < m/n < b.

Existence of square roots

Theorem For any a > 0 there exists a unique number r > 0 (denoted \sqrt{a}) such that $r^2 = a$.

We begin the proof with the following simple lemmas.

Lemma 1 Suppose *r* and *t* are positive numbers. Then $r^2 < t^2$ if and only if r < t.

Lemma 2 Suppose *r* and *t* are positive numbers. Then $r^2 = t^2$ if and only if r = t.

Proof of Lemmas 1 and 2: By linearity of the order on \mathbb{R} , we have either r < t or r > t or r = t. Since r, t > 0, we obtain that $r < t \implies r^2 < t^2$ and $r > t \implies r^2 > t^2$. Besides, $r = t \implies r^2 = t^2$. We conclude that $r^2 < t^2$ if and only if r < t. Also, $r^2 = t^2$ if and only if r = t.

Lemma 2 immediately implies uniqueness of \sqrt{a} .

To prove existence of the square root \sqrt{a} , let us consider a set $E = \{x > 0 \mid x^2 < a\}$. We shall show that $r = \sup E$ is the desired number. First we need to verify that $\sup E$ exists. By Completeness Axiom, it is enough to check that the set *E* is nonempty and bounded above. Moreover, Lemma 1 implies that any b > 0 satisfying $a \le b^2$ is an upper bound of *E*.

Consider three cases: a > 1, a < 1, and a = 1.

If a > 1 then $1 \in E$. Also, $a < a^2$ so that a is an upper bound of E. If a < 1 then $a^2 < a$ so that $a \in E$. Also, 1 is an upper bound for E. If a = 1, then $1/2 \in E$ and 1 is an upper bound of E.

Thus $r = \sup E$ exists. Clearly, r > 0. We claim that $r^2 = a$. Assume the contrary. Then $r^2 < a$ or $r^2 > a$. In the 1st case, there is no t > 0 such that $r^2 < t^2 < a$. In the 2nd case, there is no t > 0 such that $a < t^2 < r^2$. Now we get a contradiction once the following lemma is proved: **Lemma 3** Suppose *a* and *r* are positive real numbers and $a \neq r^2$. Then there exists t > 0 such that t^2 lies between *a* and r^2 , i.e., $a < t^2 < r^2$ or $r^2 < t^2 < a$.

Proof: First we consider a special case when 0 < a < 1 and r = 1. Let us show that t = (1 + a)/2 is a desired number in this case. Indeed, 0 < a < 1 implies that 1 < 1 + a < 2, then 0 < t < 1 and $t^2 < t < 1$. Further, $4(t^2 - a) = (2t)^2 - 4a = (1+a)^2 - 4a = (1+2a+a^2) - 4a = 1 - 2a + a^2 = (1 - a)^2 > 0$ since 1 - a > 0. Hence $a < t^2 < 1 = r^2$.

Next we consider a more general case $a < r^2$. In this case, $0 < ar^{-2} < 1$, where $r^{-2} = (r^2)^{-1}$, which is also $(r^{-1})^2$. By the above there exists t > 0 such that $ar^{-2} < t^2 < 1$. Then *tr* is a positive number and $a < t^2r^2 = (tr)^2 < r^2$.

It remains to consider the case $r^2 < a$. In this case, $0 < a^{-1} < r^{-2} = (r^{-1})^2$. By the above there exists t > 0such that $a^{-1} < t^2 < r^{-2}$. Then t^{-1} is a positive number and $r^2 < t^{-2} = (t^{-1})^2 < a$.