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Lecture 4:

Intervals.

Principle of mathematical induction.

Inverse function.



Problem. Construct a strict linear order ≺ on the

set C of complex numbers such that a ≺ b implies
a + c ≺ b + c for all a, b, c ∈ C.

Solution. Given complex numbers z1 = x1 + iy1 and
z2 = x2 + iy2 (where x1, x2, y1, y2 ∈ R and i =

√
−1), we let

z1 ≺ z2 if one of the following conditions hold:
• x1 < x2,
• x1 = x2 and y1 < y2.

It is easy to see that ≺ is a strict linear order on C. Also, it is
easy to check that z1 ≺ z2 if and only if 0 ≺ z2 − z1. Hence
z1 ≺ z2 if and only if z1 + w ≺ z2 + w for all z1, z2,w ∈ C.

Remark. The order ≺ is essentially an order on R2. An
analogous order can be introduced on the set Rn for any
n > 1. Such an order is called lexicographic, which refers to
the ordering of words in a dictionary.



Problem. Construct a strict linear order ≺ on the set R(x) of
rational functions in variable x with real coefficients that
makes R(x) into an ordered field.

Solution. Given rational functions f , g ∈ R(x), we let f ≺ g

if there exists M ∈ R such that f (x) < g(x) for all x > M .

It is easy to observe that ≺ is a strict order on R(x). Also, it
is easy to verify those axioms of an ordered field that involve
addition and multiplication. The only hard part is to show
that ≺ is a linear order.

Assume that f 6=g and let h=g−f . Then h(x)=p(x)/q(x),
where p and q are nonzero polynomials. Since any nonzero
polynomial has only finitely many roots, there exists M ∈ R

such that p and q have no roots in the interval (M ,∞). The
function h is continuous and nowhere zero on (M ,∞).
Therefore it maintains its sign on this interval, that is, either
h(x) > 0 for all x > M or h(x) < 0 for all x > M . In the
first case, f ≺ g . In the second case, g ≺ f .



General intervals

Suppose X is a set endowed with a strict linear order ≺. A
subset E ⊂ X is called an interval if with any two elements
it contains all elements of X that lie between them. To be
precise, a, b ∈ E and a ≺ c ≺ b imply that c ∈ E for all
a, b, c ∈ X .

Examples of intervals.

• The empty set and all one-element subsets of X are
trivially intervals.

• Open finite interval (a, b) = {c ∈ X | a ≺ c ≺ b}, where
a, b ∈ X , a ≺ b.

• Closed and semi-open finite intervals
[a, b] = (a, b) ∪ {a, b}, [a, b) = (a, b) ∪ {a}, and
(a, b] = (a, b) ∪ {b}.



General intervals

Suppose X is a set endowed with a strict linear order ≺. A
subset E ⊂ X is called an interval if with any two elements
it contains all elements of X that lie between them. To be
precise, a, b ∈ E and a ≺ c ≺ b imply that c ∈ E for all
a, b, c ∈ X .

Examples of intervals.

• Open semi-infinite intervals (a,∞) = {c ∈ X | a ≺ c}
and (−∞, a) = {c ∈ X | c ≺ a}, where a ∈ X .

• Closed semi-infinite intervals [a,∞) = (a,∞) ∪ {a} and
(−∞, a] = (−∞, a) ∪ {a}.
• The entire set X is an interval denoted (−∞,∞).

In general, there might exist other types of intervals.



Intervals of the real line

Theorem 1 Suppose E is a bounded interval of R that
consists of more than one point. Then there exist a, b ∈ R,
a < b, such that E = (a, b) or [a, b) or (a, b] or [a, b].

Theorem 2 Suppose E is an interval of R bounded above
but unbounded below. Then there exists a ∈ R such that
E = (−∞, a) or (−∞, a].

Theorem 3 Suppose E is an interval of R bounded below
but unbounded above. Then there exists a ∈ R such that
E = (a,∞) or [a,∞).

Theorem 4 Suppose E is an interval of R that is neither
bounded above nor bounded below. Then E = R.



Natural, integer, and rational numbers

Definition. A set E ⊂ R is called inductive if

1 ∈ E and, for any real number x , x ∈ E implies
x + 1 ∈ E . The set N of natural numbers is the

smallest inductive subset of R.

Remark. The set N is well defined. Namely, it is
the intersection of all inductive subsets of R.

The set of integers is defined as

Z = −N ∪ {0} ∪ N.

The set of rationals is defined as

Q={m/n | m ∈ Z, n ∈ N}.



Basic properties of the natural numbers

• 1 is the least natural number.

The interval [1,∞) is an inductive set. Hence N ⊂ [1,∞).

• If n ∈ N, then n − 1 ∈ N ∪ {0}.
Let E be the set of all n ∈ N such that n − 1 ∈ N ∪ {0}.
Then 1 ∈ E as 1− 1 = 0. Besides, for any n ∈ E we have
(n + 1)− 1 = n ∈ N so that n + 1 ∈ E . Therefore E is an
inductive set. Then N ⊂ E , which implies that E = N.

• If n ∈ N, then the open interval (n − 1, n)
contains no natural numbers.

Let E be the set of all n ∈ N such that (n − 1, n) ∩ N = ∅.
Then 1 ∈ E as N ⊂ [1,∞). Now assume n ∈ E and take
any x ∈ (n, n + 1). We have x − 1 6= 0 since x > n ≥ 1,
and x − 1 /∈ N since x − 1 ∈ (n − 1, n). By the above,
x /∈ N. Thus E is an inductive set, which implies that E = N.



Principle of well-ordering

Definition. Suppose X is a set endowed with a
strict linear order ≺. We say that a subset Y ⊂ X

is well-ordered with respect to ≺ if any nonempty
subset of Y has a least element.

Theorem The set N is well-ordered with respect to

the natural ordering of the real line R.

Proof: Let E be an arbitrary nonempty subset of N. The set
E is bounded below since 1 is a lower bound of N. Therefore
m = inf E exists. Since m is a lower bound of E while m + 1
is not, we can find n ∈ E such that m ≤ n < m + 1. As
shown before, the interval (n− 1, n) is disjoint from N. Then
(−∞, n) = (−∞,m) ∪ (n − 1, n) is disjoint from E , which
implies that n is a lower bound of E . Hence n ≤ inf E = m

so that n = m = inf E . Thus n is the least element of E .



Principle of mathematical induction

Theorem Let P(n) be an assertion depending on a natural
variable n. Suppose that
• P(1) holds,
• whenever P(k) holds, so does P(k + 1).

Then P(n) holds for all n ∈ N.

Proof: Let E be the set of all natural numbers n such that
P(n) holds. Clearly, E is an inductive set. Therefore N ⊂ E ,
which implies that E = N.

Remark. The assertion P(1) is called the basis of

induction. The implication P(k) =⇒ P(k + 1) is called
the induction step.

Examples of assertions P(n):

(a) 1 + 2 + · · ·+ n = n(n + 1)/2,
(b) n(n + 1)(n + 2) is divisible by 6,
(c) n = 2p + 3q for some p, q ∈ Z.



Theorem 1 + 2 + · · ·+ n =
n(n + 1)

2
.

Proof: The proof is by induction on n.

Basis of induction: check the formula for n = 1.

In this case, 1 = 1(1 + 1)/2, which is true.

Induction step: assume that the formula is true for n = m

and derive it for n = m + 1.

Inductive assumption: 1 + 2 + · · ·+m = m(m + 1)/2.
Then

1 + 2 + · · ·+m + (m + 1) =
m(m + 1)

2
+ (m + 1)

= (m + 1)
(m

2
+ 1

)

=
(m + 1)(m + 2)

2
.



Strong induction

Theorem Let P(n) be an assertion depending on a natural
variable n. Suppose that P(n) holds whenever P(k) holds for
all natural k < n. Then P(n) holds for all n ∈ N.

Remark. For n = 1, the assumption of the theorem means
that P(1) holds unconditionally. For n = 2, it means that
P(1) implies P(2). For n = 3, it means that P(1) and P(2)
imply P(3). And so on. . .

Proof of the theorem: For any natural number n we define
new assertion Q(n) =“P(k) holds for any natural k ≤ n”.
Then Q(1) is equivalent to P(1), in particular, it holds. By
assumption, Q(n) implies P(n + 1) for any n ∈ N. Moreover,
Q(n + 1) holds if and only if both Q(n) and P(n + 1) hold.
Therefore, Q(n) implies Q(n + 1) for all n ∈ N. By the
principle of mathematical induction, Q(n) holds for all n ∈ N.
Then P(n) holds for all n ∈ N as well.



Functions

A function f : X → Y is an assignment: to each x ∈ X we
assign an element f (x) ∈ Y .

The graph of the function f : X → Y is defined as the subset
of X × Y consisting of all pairs of the form (x , f (x)), x ∈ X .
Two functions are considered the same if their graphs coincide.

Definition. A function f : X → Y is surjective (or onto) if
for each y ∈ Y there exists at least one x ∈ X such that
f (x) = y .

The function f is injective (or one-to-one) if f (x ′) = f (x)
=⇒ x ′ = x .

Finally, f is bijective if it is both surjective and injective.
Equivalently, if for each y ∈ Y there is exactly one x ∈ X

such that f (x) = y .
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Inverse function

Suppose we have two functions f : X → Y and g : Y → X .
We say that g is the inverse function of f (denoted f −1) if
y = f (x) ⇐⇒ g(y ) = x for all x ∈ X and y ∈ Y .

Theorem 1 The inverse function f −1 exists if and only if f is
bijective.

Theorem 2 A function g : Y → X is an inverse function of
a function f : X → Y if and only if g(f (x)) = x for all
x ∈ X and f (g(y )) = y for all y ∈ Y .


