MATH 409 Advanced Calculus I Lecture 4: Intervals. Principle of mathematical induction. Inverse function. **Problem.** Construct a strict linear order \prec on the set \mathbb{C} of complex numbers such that $a \prec b$ implies $a + c \prec b + c$ for all $a, b, c \in \mathbb{C}$.

Solution. Given complex numbers $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ (where $x_1, x_2, y_1, y_2 \in \mathbb{R}$ and $i = \sqrt{-1}$), we let $z_1 \prec z_2$ if one of the following conditions hold:

•
$$x_1 < x_2$$
,

•
$$x_1 = x_2$$
 and $y_1 < y_2$.

It is easy to see that \prec is a strict linear order on \mathbb{C} . Also, it is easy to check that $z_1 \prec z_2$ if and only if $0 \prec z_2 - z_1$. Hence $z_1 \prec z_2$ if and only if $z_1 + w \prec z_2 + w$ for all $z_1, z_2, w \in \mathbb{C}$.

Remark. The order \prec is essentially an order on \mathbb{R}^2 . An analogous order can be introduced on the set \mathbb{R}^n for any n > 1. Such an order is called **lexicographic**, which refers to the ordering of words in a dictionary.

Problem. Construct a strict linear order \prec on the set $\mathbb{R}(x)$ of rational functions in variable x with real coefficients that makes $\mathbb{R}(x)$ into an ordered field.

Solution. Given rational functions $f, g \in \mathbb{R}(x)$, we let $f \prec g$ if there exists $M \in \mathbb{R}$ such that f(x) < g(x) for all x > M.

It is easy to observe that \prec is a strict order on $\mathbb{R}(x)$. Also, it is easy to verify those axioms of an ordered field that involve addition and multiplication. The only hard part is to show that \prec is a linear order.

Assume that $f \neq g$ and let h=g-f. Then h(x)=p(x)/q(x), where p and q are nonzero polynomials. Since any nonzero polynomial has only finitely many roots, there exists $M \in \mathbb{R}$ such that p and q have no roots in the interval (M, ∞) . The function h is continuous and nowhere zero on (M, ∞) . Therefore it maintains its sign on this interval, that is, either h(x) > 0 for all x > M or h(x) < 0 for all x > M. In the first case, $f \prec g$. In the second case, $g \prec f$.

General intervals

Suppose X is a set endowed with a strict linear order \prec . A subset $E \subset X$ is called an **interval** if with any two elements it contains all elements of X that lie between them. To be precise, $a, b \in E$ and $a \prec c \prec b$ imply that $c \in E$ for all $a, b, c \in X$.

Examples of intervals.

• The empty set and all one-element subsets of X are trivially intervals.

• Open finite interval $(a, b) = \{c \in X \mid a \prec c \prec b\}$, where $a, b \in X$, $a \prec b$.

• Closed and semi-open finite intervals $[a, b] = (a, b) \cup \{a, b\}$, $[a, b) = (a, b) \cup \{a\}$, and $(a, b] = (a, b) \cup \{b\}$.

General intervals

Suppose X is a set endowed with a strict linear order \prec . A subset $E \subset X$ is called an **interval** if with any two elements it contains all elements of X that lie between them. To be precise, $a, b \in E$ and $a \prec c \prec b$ imply that $c \in E$ for all $a, b, c \in X$.

Examples of intervals.

- Open semi-infinite intervals $(a, \infty) = \{c \in X \mid a \prec c\}$ and $(-\infty, a) = \{c \in X \mid c \prec a\}$, where $a \in X$.
- Closed semi-infinite intervals $[a, \infty) = (a, \infty) \cup \{a\}$ and $(-\infty, a] = (-\infty, a) \cup \{a\}$.
- The entire set X is an interval denoted $(-\infty,\infty)$.

In general, there might exist other types of intervals.

Intervals of the real line

Theorem 1 Suppose *E* is a bounded interval of \mathbb{R} that consists of more than one point. Then there exist $a, b \in \mathbb{R}$, a < b, such that E = (a, b) or [a, b) or (a, b] or [a, b].

Theorem 2 Suppose *E* is an interval of \mathbb{R} bounded above but unbounded below. Then there exists $a \in \mathbb{R}$ such that $E = (-\infty, a)$ or $(-\infty, a]$.

Theorem 3 Suppose *E* is an interval of \mathbb{R} bounded below but unbounded above. Then there exists $a \in \mathbb{R}$ such that $E = (a, \infty)$ or $[a, \infty)$.

Theorem 4 Suppose *E* is an interval of \mathbb{R} that is neither bounded above nor bounded below. Then $E = \mathbb{R}$.

Natural, integer, and rational numbers

Definition. A set $E \subset \mathbb{R}$ is called **inductive** if $1 \in E$ and, for any real number $x, x \in E$ implies $x + 1 \in E$. The set \mathbb{N} of **natural numbers** is the smallest inductive subset of \mathbb{R} .

Remark. The set \mathbb{N} is well defined. Namely, it is the intersection of all inductive subsets of \mathbb{R} .

The set of integers is defined as $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}.$

The set of **rationals** is defined as

$$\mathbb{Q} = \{ m/n \mid m \in \mathbb{Z}, n \in \mathbb{N} \}.$$

Basic properties of the natural numbers

• 1 is the least natural number.

The interval $[1,\infty)$ is an inductive set. Hence $\mathbb{N} \subset [1,\infty)$.

• If
$$n \in \mathbb{N}$$
, then $n - 1 \in \mathbb{N} \cup \{0\}$.

Let *E* be the set of all $n \in \mathbb{N}$ such that $n - 1 \in \mathbb{N} \cup \{0\}$. Then $1 \in E$ as 1 - 1 = 0. Besides, for any $n \in E$ we have $(n+1) - 1 = n \in \mathbb{N}$ so that $n+1 \in E$. Therefore *E* is an inductive set. Then $\mathbb{N} \subset E$, which implies that $E = \mathbb{N}$.

• If $n \in \mathbb{N}$, then the open interval (n-1, n) contains no natural numbers.

Let *E* be the set of all $n \in \mathbb{N}$ such that $(n-1, n) \cap \mathbb{N} = \emptyset$. Then $1 \in E$ as $\mathbb{N} \subset [1, \infty)$. Now assume $n \in E$ and take any $x \in (n, n+1)$. We have $x - 1 \neq 0$ since $x > n \ge 1$, and $x - 1 \notin \mathbb{N}$ since $x - 1 \in (n - 1, n)$. By the above, $x \notin \mathbb{N}$. Thus *E* is an inductive set, which implies that $E = \mathbb{N}$.

Principle of well-ordering

Definition. Suppose X is a set endowed with a strict linear order \prec . We say that a subset $Y \subset X$ is **well-ordered** with respect to \prec if any nonempty subset of Y has a least element.

Theorem The set \mathbb{N} is well-ordered with respect to the natural ordering of the real line \mathbb{R} .

Proof: Let *E* be an arbitrary nonempty subset of \mathbb{N} . The set *E* is bounded below since 1 is a lower bound of \mathbb{N} . Therefore $m = \inf E$ exists. Since *m* is a lower bound of *E* while m + 1 is not, we can find $n \in E$ such that $m \leq n < m + 1$. As shown before, the interval (n - 1, n) is disjoint from \mathbb{N} . Then $(-\infty, n) = (-\infty, m) \cup (n - 1, n)$ is disjoint from *E*, which implies that *n* is a lower bound of *E*. Hence $n \leq \inf E = m$ so that $n = m = \inf E$. Thus *n* is the least element of *E*.

Principle of mathematical induction

Theorem Let P(n) be an assertion depending on a natural variable n. Suppose that

- *P*(1) holds,
- whenever P(k) holds, so does P(k+1).

Then P(n) holds for all $n \in \mathbb{N}$.

Proof: Let *E* be the set of all natural numbers *n* such that P(n) holds. Clearly, *E* is an inductive set. Therefore $\mathbb{N} \subset E$, which implies that $E = \mathbb{N}$.

Remark. The assertion P(1) is called the **basis of** induction. The implication $P(k) \implies P(k+1)$ is called the induction step.

Examples of assertions P(n):

(a)
$$1 + 2 + \dots + n = n(n+1)/2$$
,
(b) $n(n+1)(n+2)$ is divisible by 6,
(c) $n = 2p + 3q$ for some $p, q \in \mathbb{Z}$.

Theorem
$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Proof: The proof is by induction on *n*.

Basis of induction: check the formula for n = 1. In this case, 1 = 1(1+1)/2, which is true.

Induction step: assume that the formula is true for n = m and derive it for n = m + 1.

Inductive assumption: $1 + 2 + \cdots + m = m(m+1)/2$. Then

$$1 + 2 + \dots + m + (m + 1) = \frac{m(m + 1)}{2} + (m + 1)$$
$$= (m + 1) \left(\frac{m}{2} + 1\right) = \frac{(m + 1)(m + 2)}{2}.$$

Strong induction

Theorem Let P(n) be an assertion depending on a natural variable *n*. Suppose that P(n) holds whenever P(k) holds for all natural k < n. Then P(n) holds for all $n \in \mathbb{N}$.

Remark. For n = 1, the assumption of the theorem means that P(1) holds unconditionally. For n = 2, it means that P(1) implies P(2). For n = 3, it means that P(1) and P(2) imply P(3). And so on...

Proof of the theorem: For any natural number n we define new assertion Q(n) = "P(k) holds for any natural $k \le n$ ". Then Q(1) is equivalent to P(1), in particular, it holds. By assumption, Q(n) implies P(n+1) for any $n \in \mathbb{N}$. Moreover, Q(n+1) holds if and only if both Q(n) and P(n+1) hold. Therefore, Q(n) implies Q(n+1) for all $n \in \mathbb{N}$. By the principle of mathematical induction, Q(n) holds for all $n \in \mathbb{N}$. Then P(n) holds for all $n \in \mathbb{N}$ as well.

Functions

A function $f: X \to Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

The **graph** of the function $f : X \to Y$ is defined as the subset of $X \times Y$ consisting of all pairs of the form (x, f(x)), $x \in X$. Two functions are considered the same if their graphs coincide.

Definition. A function $f : X \to Y$ is surjective (or onto) if for each $y \in Y$ there exists at least one $x \in X$ such that f(x) = y.

The function f is **injective** (or **one-to-one**) if f(x') = f(x) $\implies x' = x$.

Finally, f is **bijective** if it is both surjective and injective. Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that f(x) = y.

Inverse function

Suppose we have two functions $f: X \to Y$ and $g: Y \to X$. We say that g is the **inverse function** of f (denoted f^{-1}) if $y = f(x) \iff g(y) = x$ for all $x \in X$ and $y \in Y$.

Theorem 1 The inverse function f^{-1} exists if and only if f is bijective.

Theorem 2 A function $g: Y \to X$ is an inverse function of a function $f: X \to Y$ if and only if g(f(x)) = x for all $x \in X$ and f(g(y)) = y for all $y \in Y$.