MATH 409
 Advanced Calculus I

Lecture 4:

Intervals.
Principle of mathematical induction. Inverse function.

Problem. Construct a strict linear order \prec on the set \mathbb{C} of complex numbers such that $a \prec b$ implies $a+c \prec b+c$ for all $a, b, c \in \mathbb{C}$.

Solution. Given complex numbers $z_{1}=x_{1}+i y_{1}$ and
$z_{2}=x_{2}+i y_{2}$ (where $x_{1}, x_{2}, y_{1}, y_{2} \in \mathbb{R}$ and $i=\sqrt{-1}$), we let $z_{1} \prec z_{2}$ if one of the following conditions hold:

- $x_{1}<x_{2}$,
- $x_{1}=x_{2}$ and $y_{1}<y_{2}$.

It is easy to see that \prec is a strict linear order on \mathbb{C}. Also, it is easy to check that $z_{1} \prec z_{2}$ if and only if $0 \prec z_{2}-z_{1}$. Hence $z_{1} \prec z_{2}$ if and only if $z_{1}+w \prec z_{2}+w$ for all $z_{1}, z_{2}, w \in \mathbb{C}$.

Remark. The order \prec is essentially an order on \mathbb{R}^{2}. An analogous order can be introduced on the set \mathbb{R}^{n} for any $n>1$. Such an order is called lexicographic, which refers to the ordering of words in a dictionary.

Problem. Construct a strict linear order \prec on the set $\mathbb{R}(x)$ of rational functions in variable x with real coefficients that makes $\mathbb{R}(x)$ into an ordered field.

Solution. Given rational functions $f, g \in \mathbb{R}(x)$, we let $f \prec g$ if there exists $M \in \mathbb{R}$ such that $f(x)<g(x)$ for all $x>M$. It is easy to observe that \prec is a strict order on $\mathbb{R}(x)$. Also, it is easy to verify those axioms of an ordered field that involve addition and multiplication. The only hard part is to show that \prec is a linear order.
Assume that $f \neq g$ and let $h=g-f$. Then $h(x)=p(x) / q(x)$, where p and q are nonzero polynomials. Since any nonzero polynomial has only finitely many roots, there exists $M \in \mathbb{R}$ such that p and q have no roots in the interval (M, ∞). The function h is continuous and nowhere zero on (M, ∞).
Therefore it maintains its sign on this interval, that is, either $h(x)>0$ for all $x>M$ or $h(x)<0$ for all $x>M$. In the first case, $f \prec g$. In the second case, $g \prec f$.

General intervals

Suppose X is a set endowed with a strict linear order \prec. A subset $E \subset X$ is called an interval if with any two elements it contains all elements of X that lie between them. To be precise, $a, b \in E$ and $a \prec c \prec b$ imply that $c \in E$ for all $a, b, c \in X$.

Examples of intervals.

- The empty set and all one-element subsets of X are trivially intervals.
- Open finite interval $(a, b)=\{c \in X \mid a \prec c \prec b\}$, where $a, b \in X, \quad a \prec b$.
- Closed and semi-open finite intervals $[a, b]=(a, b) \cup\{a, b\}, \quad[a, b)=(a, b) \cup\{a\}$, and $(a, b]=(a, b) \cup\{b\}$.

General intervals

Suppose X is a set endowed with a strict linear order \prec. A subset $E \subset X$ is called an interval if with any two elements it contains all elements of X that lie between them. To be precise, $a, b \in E$ and $a \prec c \prec b$ imply that $c \in E$ for all $a, b, c \in X$.

Examples of intervals.

- Open semi-infinite intervals $(a, \infty)=\{c \in X \mid a \prec c\}$ and $(-\infty, a)=\{c \in X \mid c \prec a\}$, where $a \in X$.
- Closed semi-infinite intervals $[a, \infty)=(a, \infty) \cup\{a\}$ and $(-\infty, a]=(-\infty, a) \cup\{a\}$.
- The entire set X is an interval denoted $(-\infty, \infty)$.

In general, there might exist other types of intervals.

Intervals of the real line

Theorem 1 Suppose E is a bounded interval of \mathbb{R} that consists of more than one point. Then there exist $a, b \in \mathbb{R}$, $a<b$, such that $E=(a, b)$ or $[a, b)$ or $(a, b]$ or $[a, b]$.

Theorem 2 Suppose E is an interval of \mathbb{R} bounded above but unbounded below. Then there exists $a \in \mathbb{R}$ such that $E=(-\infty, a)$ or $(-\infty, a]$.

Theorem 3 Suppose E is an interval of \mathbb{R} bounded below but unbounded above. Then there exists $a \in \mathbb{R}$ such that $E=(a, \infty)$ or $[a, \infty)$.

Theorem 4 Suppose E is an interval of \mathbb{R} that is neither bounded above nor bounded below. Then $E=\mathbb{R}$.

Natural, integer, and rational numbers

Definition. A set $E \subset \mathbb{R}$ is called inductive if $1 \in E$ and, for any real number $x, x \in E$ implies $x+1 \in E$. The set \mathbb{N} of natural numbers is the smallest inductive subset of \mathbb{R}.

Remark. The set \mathbb{N} is well defined. Namely, it is the intersection of all inductive subsets of \mathbb{R}.

The set of integers is defined as

$$
\mathbb{Z}=-\mathbb{N} \cup\{0\} \cup \mathbb{N}
$$

The set of rationals is defined as

$$
\mathbb{Q}=\{m / n \mid m \in \mathbb{Z}, n \in \mathbb{N}\} .
$$

Basic properties of the natural numbers

- 1 is the least natural number.

The interval $[1, \infty)$ is an inductive set. Hence $\mathbb{N} \subset[1, \infty)$.

- If $n \in \mathbb{N}$, then $n-1 \in \mathbb{N} \cup\{0\}$.

Let E be the set of all $n \in \mathbb{N}$ such that $n-1 \in \mathbb{N} \cup\{0\}$. Then $1 \in E$ as $1-1=0$. Besides, for any $n \in E$ we have $(n+1)-1=n \in \mathbb{N}$ so that $n+1 \in E$. Therefore E is an inductive set. Then $\mathbb{N} \subset E$, which implies that $E=\mathbb{N}$.

- If $n \in \mathbb{N}$, then the open interval $(n-1, n)$ contains no natural numbers.
Let E be the set of all $n \in \mathbb{N}$ such that $(n-1, n) \cap \mathbb{N}=\emptyset$. Then $1 \in E$ as $\mathbb{N} \subset[1, \infty)$. Now assume $n \in E$ and take any $x \in(n, n+1)$. We have $x-1 \neq 0$ since $x>n \geq 1$, and $x-1 \notin \mathbb{N}$ since $x-1 \in(n-1, n)$. By the above, $x \notin \mathbb{N}$. Thus E is an inductive set, which implies that $E=\mathbb{N}$.

Principle of well-ordering

Definition. Suppose X is a set endowed with a strict linear order \prec. We say that a subset $Y \subset X$ is well-ordered with respect to \prec if any nonempty subset of Y has a least element.

Theorem The set \mathbb{N} is well-ordered with respect to the natural ordering of the real line \mathbb{R}.
Proof: Let E be an arbitrary nonempty subset of \mathbb{N}. The set E is bounded below since 1 is a lower bound of \mathbb{N}. Therefore $m=\inf E$ exists. Since m is a lower bound of E while $m+1$ is not, we can find $n \in E$ such that $m \leq n<m+1$. As shown before, the interval $(n-1, n)$ is disjoint from \mathbb{N}. Then $(-\infty, n)=(-\infty, m) \cup(n-1, n)$ is disjoint from E, which implies that n is a lower bound of E. Hence $n \leq \inf E=m$ so that $n=m=\inf E$. Thus n is the least element of E.

Principle of mathematical induction

Theorem Let $P(n)$ be an assertion depending on a natural variable n. Suppose that

- $P(1)$ holds,
- whenever $P(k)$ holds, so does $P(k+1)$.

Then $P(n)$ holds for all $n \in \mathbb{N}$.
Proof: Let E be the set of all natural numbers n such that $P(n)$ holds. Clearly, E is an inductive set. Therefore $\mathbb{N} \subset E$, which implies that $E=\mathbb{N}$.

Remark. The assertion $P(1)$ is called the basis of induction. The implication $P(k) \Longrightarrow P(k+1)$ is called the induction step.
Examples of assertions $P(n)$:
(a) $1+2+\cdots+n=n(n+1) / 2$,
(b) $n(n+1)(n+2)$ is divisible by 6 ,
(c) $n=2 p+3 q$ for some $p, q \in \mathbb{Z}$.

Theorem $1+2+\cdots+n=\frac{n(n+1)}{2}$.
Proof: The proof is by induction on n.
Basis of induction: check the formula for $n=1$.
In this case, $1=1(1+1) / 2$, which is true.
Induction step: assume that the formula is true for $n=m$ and derive it for $n=m+1$.
Inductive assumption: $1+2+\cdots+m=m(m+1) / 2$.
Then

$$
\begin{gathered}
1+2+\cdots+m+(m+1)=\frac{m(m+1)}{2}+(m+1) \\
=(m+1)\left(\frac{m}{2}+1\right)=\frac{(m+1)(m+2)}{2} .
\end{gathered}
$$

Strong induction

Theorem Let $P(n)$ be an assertion depending on a natural variable n. Suppose that $P(n)$ holds whenever $P(k)$ holds for all natural $k<n$. Then $P(n)$ holds for all $n \in \mathbb{N}$.
Remark. For $n=1$, the assumption of the theorem means that $P(1)$ holds unconditionally. For $n=2$, it means that $P(1)$ implies $P(2)$. For $n=3$, it means that $P(1)$ and $P(2)$ imply $P(3)$. And so on...

Proof of the theorem: For any natural number n we define new assertion $Q(n)=$ " $P(k)$ holds for any natural $k \leq n$ ". Then $Q(1)$ is equivalent to $P(1)$, in particular, it holds. By assumption, $Q(n)$ implies $P(n+1)$ for any $n \in \mathbb{N}$. Moreover, $Q(n+1)$ holds if and only if both $Q(n)$ and $P(n+1)$ hold. Therefore, $Q(n)$ implies $Q(n+1)$ for all $n \in \mathbb{N}$. By the principle of mathematical induction, $Q(n)$ holds for all $n \in \mathbb{N}$. Then $P(n)$ holds for all $n \in \mathbb{N}$ as well.

Functions

A function $f: X \rightarrow Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.
The graph of the function $f: X \rightarrow Y$ is defined as the subset of $X \times Y$ consisting of all pairs of the form $(x, f(x)), x \in X$. Two functions are considered the same if their graphs coincide.

Definition. A function $f: X \rightarrow Y$ is surjective (or onto) if for each $y \in Y$ there exists at least one $x \in X$ such that $f(x)=y$.
The function f is injective (or one-to-one) if $f\left(x^{\prime}\right)=f(x)$ $\Longrightarrow x^{\prime}=x$.
Finally, f is bijective if it is both surjective and injective. Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that $f(x)=y$.

Inverse function

Suppose we have two functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$. We say that g is the inverse function of $f\left(\operatorname{denoted} f^{-1}\right)$ if $y=f(x) \Longleftrightarrow g(y)=x$ for all $x \in X$ and $y \in Y$.

Theorem 1 The inverse function f^{-1} exists if and only if f is bijective.

Theorem 2 A function $g: Y \rightarrow X$ is an inverse function of a function $f: X \rightarrow Y$ if and only if $g(f(x))=x$ for all $x \in X$ and $f(g(y))=y$ for all $y \in Y$.

