MATH 409
 Advanced Calculus I

Lecture 5:
 Binomial formula.

Inverse function and inverse images. Countable and uncountable sets.

Well-ordering and induction

Principle of well-ordering:

The set \mathbb{N} is well-ordered, that is, any nonempty subset of \mathbb{N} has a least element.

Principle of mathematical induction:
Let $P(n)$ be an assertion depending on a natural variable n.
Suppose that $P(1)$ holds and $P(k)$ implies $P(k+1)$ for any
$k \in \mathbb{N}$. Then $P(n)$ holds for all $n \in \mathbb{N}$.
Induction with a different base:
Let $P(n)$ be an assertion depending on an integer variable n. Suppose that $P\left(n_{0}\right)$ holds for some $n_{0} \in \mathbb{Z}$ and $P(k)$ implies $P(k+1)$ for any $k \geq n_{0}$. Then $P(n)$ holds for all $n \geq n_{0}$.

Strong induction: Let $P(n)$ be an assertion depending on a natural variable n. Suppose that $P(n)$ holds whenever $P(k)$ holds for all natural $k<n$. Then $P(n)$ holds for all $n \in \mathbb{N}$.

Inductive definition

The principle of mathematical induction allows to define mathematical objects inductively (that is, recursively).

Examples of inductive definitions:

- Power a^{n} of a number

Given a real number a, we let $a^{0}=1$ and $a^{n}=a^{n-1} a$ for any $n \in \mathbb{N}$.

- Factorial n !

We let $0!=1$ and $n!=(n-1)!\cdot n$ for any $n \in \mathbb{N}$.

- Fibonacci numbers F_{1}, F_{2}, \ldots

We let $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for any $n \geq 3$.

Binomial coefficients

Definition. For any integers n and $k, 0 \leq k \leq n$, we define the binomial coefficient $\binom{n}{k}$ (n choose k) by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

If $k>0$ then $\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{1 \cdot 2 \cdot \ldots \cdot k}$.
" n choose k " refers to the fact that $\binom{n}{k}$ is the number of all k-element subsets of an n-element set.

Lemma $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$ for all n and $k, 1 \leq k \leq n$.
Proof: $\quad\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{(k-1)!(n-k+1)!}+\frac{n!}{k!(n-k)!}$
$=\frac{n!}{(k-1)!(n-k)!}\left(\frac{1}{n-k+1}+\frac{1}{k}\right)=\frac{n!}{(k-1)!(n-k)!} \cdot \frac{n+1}{k(n-k+1)}$
$=\frac{(n+1)!}{k!(n-k+1)!}=\binom{n+1}{k}$.

Pascal's triangle

The formula $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$ allows to compute the binomial coefficients recursively. Usually the results are formatted as a triangular array called Pascal's triangle. Namely, $\binom{n}{k}$ is the k-th number in the n-th row of the triangle (the numbering of rows and elements in a row starts from 0).

Binomial formula

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} .
$$

In particular, $(a+b)^{2}=a^{2}+2 a b+b^{2}$,
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$,
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$.
The coefficients in the binomial formula are consecutive numbers in the n-th row of Pascal's triangle.

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Proof: The proof is by induction on n. In the case $n=1$, the formula is trivial: $(a+b)^{1}=\binom{1}{0} a+\binom{1}{1} b$. Now assume that the formula holds for a particular value of n. Then

$$
\begin{gathered}
(a+b)^{n+1}=(a+b)(a+b)^{n}=(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
=\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k+1} \\
=\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=1}^{n+1}\binom{n}{k-1} a^{n-k+1} b^{k} \\
\left.=\binom{n}{0} a^{n+1}+\sum_{k=1}^{n}\binom{n}{k}+\binom{n}{k-1}\right) a^{n-k+1} b^{k}+\binom{n}{n} b^{n+1} \\
=\binom{n+1}{0} a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} a^{n+1-k} b^{k}+\binom{n+1}{n+1} b^{n+1},
\end{gathered}
$$

which completes the induction step.

Functions

A function (or map) $f: X \rightarrow Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

Definition. A function $f: X \rightarrow Y$ is injective (or one-to-one) if $f\left(x^{\prime}\right)=f(x) \Longrightarrow x^{\prime}=x$.
The function f is surjective (or onto) if for each $y \in Y$ there exists at least one $x \in X$ such that $f(x)=y$.
Finally, f is bijective if it is both surjective and injective.
Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that $f(x)=y$.

Suppose we have two functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$. We say that g is the inverse function of $f\left(\operatorname{denoted} f^{-1}\right)$ if $y=f(x) \Longleftrightarrow g(y)=x$ for all $x \in X$ and $y \in Y$.

Theorem The inverse function f^{-1} exists if and only if f is bijective.

Definition. The composition of functions $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is a function from X to Z, denoted $g \circ f$, that is defined by $(g \circ f)(x)=g(f(x)), x \in X$.

Properties of compositions:

- If f and g are one-to-one, then $g \circ f$ is also one-to-one.
- If $g \circ f$ is one-to-one, then f is also one-to-one.
- If f and g are onto, then $g \circ f$ is also onto.
- If $g \circ f$ is onto, then g is also onto.
- If f and g are bijective, then $g \circ f$ is also bijective.
- If f and g are invertible, then $g \circ f$ is also invertible and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.
- If id ${ }_{Z}$ denotes the identity function on a set Z, then $f \circ \mathrm{id}_{X}=f=\operatorname{id}_{Y}$ of for any function $f: X \rightarrow Y$.
- For any functions $f: X \rightarrow Y$ and $g: Y \rightarrow X$, we have $g=f^{-1}$ if and only if $g \circ f=\operatorname{id}_{X}$ and $f \circ g=\operatorname{id}_{Y}$.

Images and pre-images

Definition. Given a function $f: X \rightarrow Y$, the image of a set $E \subset X$ under f, denoted $f(E)$, is a subset of Y defined by $f(E)=\{f(x) \mid x \in E\}$. The pre-image (or inverse image) of a set $D \subset Y$ under f, denoted $f^{-1}(D)$, is a subset of X defined by $f^{-1}(D)=\{x \in X \mid f(x) \in D\}$.
Remark. If the function f is invertible, then the pre-image $f^{-1}(D)$ is also the image of D under the inverse function f^{-1}. However $f^{-1}(D)$ is well defined even if f is not invertible.

Properties of images and pre-images:

- $f\left(\bigcup_{\alpha \in I} E_{\alpha}\right)=\bigcup_{\alpha \in I} f\left(E_{\alpha}\right), \quad f\left(\bigcap_{\alpha \in I} E_{\alpha}\right) \subset \bigcap_{\alpha \in I} f\left(E_{\alpha}\right)$;
- $f^{-1}\left(\bigcup_{\alpha \in I} D_{\alpha}\right)=\bigcup_{\alpha \in I} f^{-1}\left(D_{\alpha}\right), f^{-1}\left(\bigcap_{\alpha \in I} D_{\alpha}\right)=\bigcap_{\alpha \in I} f^{-1}\left(D_{\alpha}\right)$,
- $f^{-1}\left(D \backslash D_{0}\right)=f^{-1}(D) \backslash f^{-1}\left(D_{0}\right)$.

Cardinality of a set

Definition. Given two sets A and B, we say that A is of the same cardinality as B if there exists a bijective function $f: A \rightarrow B$. Notation: $|A|=|B|$.

Theorem The relation "is of the same cardinality as" is an equivalence relation, i.e., it is reflexive $(|A|=|A|$ for any set $A)$, symmetric $(|A|=|B|$ implies $|B|=|A|)$, and transitive $(|A|=|B|$ and $|B|=|C|$ imply $|A|=|C|$).
Proof: The identity map $\operatorname{id}_{A}: A \rightarrow A$ is bijective. If f is a bijection of A onto B, then the inverse map f^{-1} is a bijection of B onto A. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections then the composition $g \circ f$ is a bijection of A onto C.

Countable and uncountable sets

A nonempty set is finite if it is of the same cardinality as $\{1,2, \ldots, n\}=[1, n] \cap \mathbb{N}$ for some $n \in \mathbb{N}$. Otherwise it is infinite.

An infinite set is called countable (or countably infinite) if it is of the same cardinality as \mathbb{N}.
Otherwise it is uncountable (or uncountably infinite).

An infinite set E is countable if it is possible to arrange all elements of E into a single sequence (an infinite list) x_{1}, x_{2}, \ldots

Countable sets

Examples of countable sets:

- \mathbb{N} : natural numbers
- $2 \mathbb{N}$: even natural numbers
- \mathbb{Z} : integers
- $\mathbb{N} \times \mathbb{N}$: pairs of natural numbers
- \mathbb{Q} : rational numbers
- Algebraic numbers (roots of nonzero polynomials with integer coefficients).

Properties of countable sets:

- Any infinite set contains a countable subset.
- Any infinite subset of a countable set is also countable.
- If A_{1}, A_{2}, \ldots are finite or countable sets, then the union $A_{1} \cup A_{2} \cup \ldots$ is also finite or countable.

Theorem The set \mathbb{R} is uncountable.

Proof: It is enough to prove that the interval $(0,1)$ is uncountable. Assume the contrary. Then all numbers from $(0,1)$ can be arranged into an infinite list x_{1}, x_{2}, \ldots Any number $x \in(0,1)$ admits a decimal expansion of the form $0 . d_{1} d_{2} d_{3} \ldots$, where each $d_{i} \in\{0,1, \ldots, 9\}$. In particular, $x_{1}=0 . d_{11} d_{12} d_{13} d_{14} d_{15} \ldots$
$x_{2}=0 . d_{21} d_{22} d_{23} d_{24} d_{25} \ldots$
$x_{3}=0 . d_{31} d_{32} d_{33} d_{34} d_{35} \ldots$
Now for any $n \in \mathbb{N}$ choose a decimal digit \tilde{d}_{n} such that $\tilde{d}_{n} \neq d_{n n}$ and $\tilde{d}_{n} \notin\{0,9\}$. Then $0 . \tilde{d}_{1} \tilde{d}_{2} \tilde{d}_{3} \ldots$ is the decimal expansion of some number $\tilde{x} \in(0,1)$. By construction, it is different from all expansions in the list. Although some real numbers admit two decimal expansions (e.g., $0.50000 \ldots$ and $0.49999 \ldots$), the condition $\tilde{d}_{n} \notin\{0,9\}$ ensures that \tilde{x} is not such a number. Thus \tilde{x} is not listed, a contradiction.

