MATH 409 Advanced Calculus I Lecture 5: Binomial formula. Inverse function and inverse images. Countable and uncountable sets.

Well-ordering and induction

Principle of well-ordering:

The set $\mathbb N$ is well-ordered, that is, any nonempty subset of $\mathbb N$ has a least element.

Principle of mathematical induction:

Let P(n) be an assertion depending on a natural variable n. Suppose that P(1) holds and P(k) implies P(k + 1) for any $k \in \mathbb{N}$. Then P(n) holds for all $n \in \mathbb{N}$.

Induction with a different base:

Let P(n) be an assertion depending on an integer variable n. Suppose that $P(n_0)$ holds for some $n_0 \in \mathbb{Z}$ and P(k) implies P(k+1) for any $k \ge n_0$. Then P(n) holds for all $n \ge n_0$.

Strong induction: Let P(n) be an assertion depending on a natural variable *n*. Suppose that P(n) holds whenever P(k) holds for all natural k < n. Then P(n) holds for all $n \in \mathbb{N}$.

Inductive definition

The principle of mathematical induction allows to define mathematical objects inductively (that is, recursively).

Examples of inductive definitions:

• Power a^n of a number

Given a real number a, we let $a^0 = 1$ and $a^n = a^{n-1}a$ for any $n \in \mathbb{N}$.

• Factorial *n*!

We let 0! = 1 and $n! = (n-1)! \cdot n$ for any $n \in \mathbb{N}$.

• Fibonacci numbers F_1, F_2, \ldots We let $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for any $n \ge 3$.

Binomial coefficients

Definition. For any integers *n* and *k*, $0 \le k \le n$, we define the **binomial coefficient** $\binom{n}{k}$ (*n* choose *k*) by

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}.$$

If $k > 0$ then $\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{1 \cdot 2 \cdot \dots \cdot k}.$

"*n* choose *k*" refers to the fact that $\binom{n}{k}$ is the number of all *k*-element subsets of an *n*-element set.

Lemma $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ for all n and k, $1 \le k \le n$. *Proof:* $\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$ $= \frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{n-k+1} + \frac{1}{k}\right) = \frac{n!}{(k-1)!(n-k)!} \cdot \frac{n+1}{k(n-k+1)!}$ $= \frac{(n+1)!}{k!(n-k+1)!} = \binom{n+1}{k}.$

Pascal's triangle

The formula $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ allows to compute the binomial coefficients recursively. Usually the results are formatted as a triangular array called **Pascal's triangle**. Namely, $\binom{n}{k}$ is the *k*-th number in the *n*-th row of the triangle (the numbering of rows and elements in a row starts from 0).

Binomial formula

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

In particular,
$$(a + b)^2 = a^2 + 2ab + b^2$$
,
 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$,
 $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$.

The coefficients in the binomial formula are consecutive numbers in the *n*-th row of Pascal's triangle.

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Proof: The proof is by induction on *n*. In the case n = 1, the formula is trivial: $(a + b)^1 = {1 \choose 0}a + {1 \choose 1}b$. Now assume that the formula holds for a particular value of *n*. Then

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k$$
$$= \sum_{k=0}^n \binom{n}{k}a^{n-k+1}b^k + \sum_{k=0}^n \binom{n}{k}a^{n-k}b^{k+1}$$
$$= \sum_{k=0}^n \binom{n}{k}a^{n-k+1}b^k + \sum_{k=1}^{n+1} \binom{n}{k-1}a^{n-k+1}b^k$$
$$= \binom{n}{0}a^{n+1} + \sum_{k=1}^n \binom{n}{k}a^{n+1-k}b^k + \binom{n}{n}b^{n+1}$$
$$= \binom{n+1}{0}a^{n+1} + \sum_{k=1}^n \binom{n+1}{k}a^{n+1-k}b^k + \binom{n+1}{n+1}b^{n+1},$$

which completes the induction step.

Functions

A function (or map) $f: X \to Y$ is an assignment: to each $x \in X$ we assign an element $f(x) \in Y$.

Definition. A function $f: X \to Y$ is **injective** (or **one-to-one**) if $f(x') = f(x) \implies x' = x$.

The function f is **surjective** (or **onto**) if for each $y \in Y$ there exists at least one $x \in X$ such that f(x) = y.

Finally, f is **bijective** if it is both surjective and injective. Equivalently, if for each $y \in Y$ there is exactly one $x \in X$ such that f(x) = y.

Suppose we have two functions $f : X \to Y$ and $g : Y \to X$. We say that g is the **inverse function** of f (denoted f^{-1}) if $y = f(x) \iff g(y) = x$ for all $x \in X$ and $y \in Y$.

Theorem The inverse function f^{-1} exists if and only if f is bijective.

Definition. The **composition** of functions $f: X \to Y$ and $g: Y \to Z$ is a function from X to Z, denoted $g \circ f$, that is defined by $(g \circ f)(x) = g(f(x)), x \in X$.

Properties of compositions:

- If f and g are one-to-one, then $g \circ f$ is also one-to-one.
- If $g \circ f$ is one-to-one, then f is also one-to-one.
- If f and g are onto, then $g \circ f$ is also onto.
- If $g \circ f$ is onto, then g is also onto.
- If f and g are bijective, then $g \circ f$ is also bijective.

• If f and g are invertible, then $g \circ f$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

• If id_Z denotes the identity function on a set Z, then $f \circ id_X = f = id_Y \circ f$ for any function $f : X \to Y$.

• For any functions $f: X \to Y$ and $g: Y \to X$, we have $g = f^{-1}$ if and only if $g \circ f = id_X$ and $f \circ g = id_Y$.

Images and pre-images

Definition. Given a function $f : X \to Y$, the **image** of a set $E \subset X$ under f, denoted f(E), is a subset of Y defined by $f(E) = \{f(x) \mid x \in E\}$. The **pre-image** (or **inverse image**) of a set $D \subset Y$ under f, denoted $f^{-1}(D)$, is a subset of X defined by $f^{-1}(D) = \{x \in X \mid f(x) \in D\}$.

Remark. If the function f is invertible, then the pre-image $f^{-1}(D)$ is also the image of D under the inverse function f^{-1} . However $f^{-1}(D)$ is well defined even if f is not invertible.

Properties of images and pre-images:

•
$$f\left(\bigcup_{\alpha\in I} E_{\alpha}\right) = \bigcup_{\alpha\in I} f(E_{\alpha}), \quad f\left(\bigcap_{\alpha\in I} E_{\alpha}\right) \subset \bigcap_{\alpha\in I} f(E_{\alpha});$$

• $f^{-1}\left(\bigcup_{\alpha\in I} D_{\alpha}\right) = \bigcup_{\alpha\in I} f^{-1}(D_{\alpha}), \quad f^{-1}\left(\bigcap_{\alpha\in I} D_{\alpha}\right) = \bigcap_{\alpha\in I} f^{-1}(D_{\alpha}),$

•
$$f^{-1}(D \setminus D_0) = f^{-1}(D) \setminus f^{-1}(D_0).$$

Cardinality of a set

Definition. Given two sets A and B, we say that A is of the same **cardinality** as B if there exists a bijective function $f : A \rightarrow B$. Notation: |A| = |B|.

Theorem The relation "is of the same cardinality as" is an equivalence relation, i.e., it is reflexive (|A| = |A| for any set A), symmetric (|A| = |B| implies |B| = |A|), and transitive (|A| = |B| and |B| = |C| imply |A| = |C|).

Proof: The identity map $id_A : A \to A$ is bijective. If f is a bijection of A onto B, then the inverse map f^{-1} is a bijection of B onto A. If $f : A \to B$ and $g : B \to C$ are bijections then the composition $g \circ f$ is a bijection of A onto C.

Countable and uncountable sets

A nonempty set is **finite** if it is of the same cardinality as $\{1, 2, ..., n\} = [1, n] \cap \mathbb{N}$ for some $n \in \mathbb{N}$. Otherwise it is **infinite**.

An infinite set is called **countable** (or **countably infinite**) if it is of the same cardinality as \mathbb{N} . Otherwise it is **uncountable** (or **uncountably infinite**).

An infinite set E is countable if it is possible to arrange all elements of E into a single sequence (an infinite list) x_1, x_2, \ldots

Countable sets

Examples of countable sets:

- \mathbb{N} : natural numbers
- $2\mathbb{N}$: even natural numbers
- \mathbb{Z} : integers
- $\mathbb{N}\times\mathbb{N}:$ pairs of natural numbers
- \mathbb{Q} : rational numbers
- Algebraic numbers (roots of nonzero polynomials with integer coefficients).

Properties of countable sets:

- Any infinite set contains a countable subset.
- Any infinite subset of a countable set is also countable.
- If A_1, A_2, \ldots are finite or countable sets, then the union $A_1 \cup A_2 \cup \ldots$ is also finite or countable.

Theorem The set \mathbb{R} is uncountable.

Proof: It is enough to prove that the interval (0,1) is uncountable. Assume the contrary. Then all numbers from (0,1) can be arranged into an infinite list x_1, x_2, \ldots Any number $x \in (0,1)$ admits a decimal expansion of the form $0.d_1d_2d_3\ldots$, where each $d_i \in \{0,1,\ldots,9\}$. In particular,

 $\begin{aligned} x_1 &= 0.d_{11}d_{12}d_{13}d_{14}d_{15}\dots \\ x_2 &= 0.d_{21}d_{22}d_{23}d_{24}d_{25}\dots \\ x_3 &= 0.d_{31}d_{32}d_{33}d_{34}d_{35}\dots \end{aligned}$

Now for any $n \in \mathbb{N}$ choose a decimal digit \tilde{d}_n such that $\tilde{d}_n \neq d_{nn}$ and $\tilde{d}_n \notin \{0,9\}$. Then $0.\tilde{d}_1\tilde{d}_2\tilde{d}_3...$ is the decimal expansion of some number $\tilde{x} \in (0,1)$. By construction, it is different from all expansions in the list. Although some real numbers admit two decimal expansions (e.g., 0.50000... and 0.49999...), the condition $\tilde{d}_n \notin \{0,9\}$ ensures that \tilde{x} is not such a number. Thus \tilde{x} is not listed, a contradiction.