# MATH 409 <br> Advanced Calculus I 

## Lecture 6: <br> Limits of sequences. <br> Limit theorems.

## Convergence of a sequence

A sequence of elements of a set $X$ is a function $f: \mathbb{N} \rightarrow X$. Notation: $x_{1}, x_{2}, \ldots$, where $x_{n}=f(n)$, or $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, or $\left\{x_{n}\right\}$.

Definition. Sequence $\left\{x_{n}\right\}$ of real numbers is said to converge to a real number a if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$. The number $a$ is called the limit of $\left\{x_{n}\right\}$. Notation: $\lim _{n \rightarrow \infty} x_{n}=a$, or $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
A sequence is called convergent if it has a limit and divergent otherwise.

The condition $\left|x_{n}-a\right|<\varepsilon$ is equivalent to $a-\varepsilon<x_{n}<a+\varepsilon$ or to $x_{n} \in(a-\varepsilon, a+\varepsilon)$. The interval $(a-\varepsilon, a+\varepsilon)$ is called the $\varepsilon$-neighborhood of the point $a$. The convergence $x_{n} \rightarrow a$ means that any $\varepsilon$-neighborhood of $a$ contains all but finitely many elements of the sequence $\left\{x_{n}\right\}$.

## Examples

- The sequence $\{1 / n\}_{n \in \mathbb{N}}$ converges to 0 .

By the Archimedean Principle, for any $\varepsilon>0$ there exists a natural number $N$ such that $N \varepsilon>1$. Then for any integer $n \geq N$ we have $n \varepsilon \geq N \varepsilon>1$ so that $1 / n<\varepsilon$. Since $1 / n>0$, we obtain $|1 / n|<\varepsilon$ for all $n \geq N$.

- Constant sequence $\left\{x_{n}\right\}$, where $x_{n}=a$ for some $a \in \mathbb{R}$ and all $n \in \mathbb{N}$.
Since $\left|x_{n}-a\right|=0$ for all $n \in \mathbb{N}$, the sequence converges to $a$.
- Sequence $\left\{(-1)^{n}\right\}_{n \in \mathbb{N}}$, i.e., $-1,1,-1,1, \ldots$, is divergent.
- Sequence $\{n\}_{n \in \mathbb{N}}$, i.e., $1,2,3,4, \ldots$, is divergent.


## Basic properties of convergent sequences

- The limit is unique.

Suppose $a$ and $b$ are distinct real numbers. Let
$\varepsilon=|b-a| / 2$. Then $\varepsilon$-neighborhoods of $a$ and $b$ are disjoint. Hence they cannot both contain all but finitely many elements of the same sequence.

- Any convergent sequence $\left\{x_{n}\right\}$ is bounded, which means that the set of its elements is bounded.
This follows from three facts: any $\varepsilon$-neighborhood is bounded, any finite set is bounded, and the union of two bounded sets is also bounded.
- Any subsequence converges to the same limit. Here a subsequence of a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is any sequence of the form $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$, where $\left\{n_{k}\right\}$ is an increasing sequence of natural numbers (note that $n_{k} \geq k$ ).


## Divergence to infinity

Definition. A sequence $\left\{x_{n}\right\}$ is said to diverge to infinity if for any $C>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}\right|>C$ for all $n \geq N$.

Observe that such a sequence is indeed divergent as it is not bounded.

Definition. A sequence $\left\{x_{n}\right\}$ is said to diverge to $+\infty$ if for any $C \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $x_{n}>C$ for all $n \geq N$. Likewise, $\left\{x_{n}\right\}$ is said to diverge to $-\infty$ if for any $C \in \mathbb{R}$ there exists $N \in \mathbb{N}$ such that $x_{n}<C$ for all $n \geq N$.

Example. The sequence $\{n\}_{n \in \mathbb{N}}$ diverges to $+\infty$.

## Squeeze Theorem

Theorem Suppose $\left\{x_{n}\right\},\left\{y_{n}\right\}$, and $\left\{w_{n}\right\}$ are three sequences of real numbers such that

## $x_{n} \leq w_{n} \leq y_{n}$ for all sufficiently large $n$.

If the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ both converge to the same limit $a$, then $\left\{w_{n}\right\}$ converges to $a$ as well.

Proof: Since $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$, for any $\varepsilon>0$ there exist natural numbers $N_{1}$ and $N_{2}$ such that $a-\varepsilon<x_{n}<a+\varepsilon$ for all $n \geq N_{1}$ and $a-\varepsilon<y_{n}<a+\varepsilon$ for all $n \geq N_{2}$. Besides, there exists $N_{0} \in \mathbb{N}$ such that $x_{n} \leq w_{n} \leq y_{n}$ for all $n \geq N_{0}$. Set $N=\max \left(N_{0}, N_{1}, N_{2}\right)$. Then for any natural number $n \geq N$ we have $a-\varepsilon<x_{n} \leq w_{n} \leq y_{n}<a+\varepsilon$, which implies that $a-\varepsilon<w_{n}<a+\varepsilon$. Thus $\lim _{n \rightarrow \infty} w_{n}=a$.

## Comparison Theorem

Theorem Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent sequences. If $x_{n} \leq y_{n}$ for all sufficiently large $n$, then $\lim _{n \rightarrow \infty} x_{n} \leq \lim _{n \rightarrow \infty} y_{n}$.
Proof: Let $a=\lim _{n \rightarrow \infty} x_{n}$ and $b=\lim _{n \rightarrow \infty} y_{n}$. Assume to the contrary that $a>b$. Then $\varepsilon=(a-b) / 2$ is a positive number. Hence there exists a natural number $N$ such that $\left|x_{n}-a\right|<\varepsilon$ and $\left|y_{n}-b\right|<\varepsilon$ for all $n \geq N$. In particular, $y_{n}<b+\varepsilon$ and $a-\varepsilon<x_{n}$ for $n \geq N$. However $b+\varepsilon=a-\varepsilon=(a+b) / 2$, which implies that $y_{n}<x_{n}$ for all $n \geq N$, a contradiction.

Corollary If all elements of a convergent sequence $\left\{x_{n}\right\}$ belong to a closed interval $[a, b]$, then the limit belongs to $[a, b]$ as well.

## Convergence and arithmetic operations

Theorem Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent sequences of real numbers. Then the sequences $\left\{x_{n}+y_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{x_{n}-y_{n}\right\}_{n \in \mathbb{N}}$ are also convergent.

Moreover, if $a=\lim _{n \rightarrow \infty} x_{n}$ and $b=\lim _{n \rightarrow \infty} y_{n}$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=a+b$ and $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=a-b$.

Proof: Since $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} y_{n}=b$, for any $\varepsilon>0$ there exists a natural number $N$ such that $\left|x_{n}-a\right|<\varepsilon / 2$ and $\left|y_{n}-b\right|<\varepsilon / 2$ for all $n \geq N$. Then for any $n \geq N$ we obtain

$$
\begin{aligned}
& \left|\left(x_{n}+y_{n}\right)-(a+b)\right|=\left|\left(x_{n}-a\right)+\left(y_{n}-b\right)\right| \\
& \quad \leq\left|x_{n}-a\right|+\left|y_{n}-b\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon, \\
& \left|\left(x_{n}-y_{n}\right)-(a-b)\right|=\left|\left(x_{n}-a\right)+\left(b-y_{n}\right)\right| \\
& \quad \leq\left|x_{n}-a\right|+\left|b-y_{n}\right|=\left|x_{n}-a\right|+\left|y_{n}-b\right|<\varepsilon .
\end{aligned}
$$

Thus $x_{n}+y_{n} \rightarrow a+b$ and $x_{n}-y_{n} \rightarrow a-b$ as $n \rightarrow \infty$.

Theorem Suppose $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent sequences of real numbers. Then the sequence $\left\{x_{n} y_{n}\right\}_{n \in \mathbb{N}}$ is also convergent. Moreover, if $a=\lim _{n \rightarrow \infty} x_{n}$ and $b=\lim _{n \rightarrow \infty} y_{n}$, then $\lim _{n \rightarrow \infty} x_{n} y_{n}=a b$.
Proof: Since $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$ as $n \rightarrow \infty$, for any $\delta>0$ there exists $N(\delta) \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\delta$ and $\left|y_{n}-b\right|<\delta$ for all $n \geq N(\delta)$. Then for any $n \geq N(\delta)$ we obtain

$$
\begin{aligned}
& \left|x_{n} y_{n}-a b\right|=\left|x_{n} y_{n}-a y_{n}+a y_{n}-a b\right|=\left|\left(x_{n}-a\right) y_{n}+a\left(y_{n}-b\right)\right| \\
& \quad=\left|\left(x_{n}-a\right) y_{n}-\left(x_{n}-a\right) b+\left(x_{n}-a\right) b+a\left(y_{n}-b\right)\right| \\
& \quad=\left|\left(x_{n}-a\right)\left(y_{n}-b\right)+\left(x_{n}-a\right) b+a\left(y_{n}-b\right)\right| \\
& \quad \leq\left|\left(x_{n}-a\right)\left(y_{n}-b\right)\right|+\left|\left(x_{n}-a\right) b\right|+\left|a\left(y_{n}-b\right)\right| \\
& \quad=\left|x_{n}-a\right|\left|y_{n}-b\right|+|b|\left|x_{n}-a\right|+|a|\left|y_{n}-b\right| \\
& \quad<\delta^{2}+(|a|+|b|) \delta .
\end{aligned}
$$

Now, given $\varepsilon>0$, we set $\delta=\min \left(1,(1+|a|+|b|)^{-1} \varepsilon\right)$.
Then $\delta>0$ and $\delta^{2}+(|a|+|b|) \delta \leq(1+|a|+|b|) \delta \leq \varepsilon$.
By the above, $\left|x_{n} y_{n}-a b\right|<\varepsilon$ for all $n \geq N(\delta)$.

Theorem Suppose that a sequence $\left\{x_{n}\right\}$ converges to some $a \in \mathbb{R}$. If $a \neq 0$ and $x_{n} \neq 0$ for all $n \in \mathbb{N}$, then the sequence $\left\{x_{n}^{-1}\right\}_{n \in \mathbb{N}}$ converges to $a^{-1}$.

Proof: Since $x_{n} \rightarrow a$ as $n \rightarrow \infty$, for any $\delta>0$ there exists $N(\delta) \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\delta$ for all $n \geq N(\delta)$.
Given $\varepsilon>0$, we set $\delta=\min \left(|a| / 2,|a|^{2} \varepsilon / 2\right)$. Then for any $n \geq N(\delta)$ we have $\left|x_{n}-a\right|<|a| / 2$. Since

$$
|a| \leq\left|a-x_{n}\right|+\left|x_{n}\right|=\left|x_{n}-a\right|+\left|x_{n}\right|,
$$

it follows that $\left|x_{n}\right| \geq|a|-\left|x_{n}-a\right|>|a|-|a| / 2=|a| / 2$.
Furthermore, for any $n \geq N(\delta)$ we obtain

$$
\left|\frac{1}{x_{n}}-\frac{1}{a}\right|=\left|\frac{a-x_{n}}{a x_{n}}\right|=\frac{\left|x_{n}-a\right|}{|a|\left|x_{n}\right|} \leq \frac{2\left|x_{n}-a\right|}{|a|^{2}}<\frac{2 \delta}{|a|^{2}} \leq \varepsilon .
$$

We conclude that $1 / x_{n} \rightarrow 1 / a$ as $n \rightarrow \infty$.

Corollary 1 If $\lim _{n \rightarrow \infty} x_{n}=a$, then $\lim _{n \rightarrow \infty} c x_{n}=c a$ for any $c \in \mathbb{R}$.

Corollary 2 If $\lim _{n \rightarrow \infty} x_{n}=a$, then $\lim _{n \rightarrow \infty}\left(-x_{n}\right)=-a$.

Corollary 3 If $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} y_{n}=b$, and, moreover, $b \neq 0$ and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} x_{n} / y_{n}=a / b$.

Proof: Since $b \neq 0$ and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, it follows that $y_{n}^{-1} \rightarrow b^{-1}$ as $n \rightarrow \infty$. Since $x_{n} / y_{n}=x_{n} y_{n}^{-1}$ for all $n \in \mathbb{N}$, we obtain that $x_{n} / y_{n} \rightarrow a b^{-1}=a / b$ as $n \rightarrow \infty$.

