MATH 409 Advanced Calculus I Lecture 8: Monotone sequences (continued). Cauchy sequences. Limit points.

Monotone sequences

Definition. A sequence $\{x_n\}$ is called **increasing** (or **nondecreasing**) if $x_n \leq x_{n+1}$ for all $n \in \mathbb{N}$. It is called **strictly increasing** if $x_n < x_{n+1}$ for all $n \in \mathbb{N}$.

Likewise, the sequence $\{x_n\}$ is called **decreasing** (or **nonincreasing**) if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$. It is **strictly decreasing** if $x_n > x_{n+1}$ for all $n \in \mathbb{N}$. Increasing and decreasing sequences are called **monotone**.

Theorem Any monotone sequence converges to a limit if bounded, and diverges to infinity otherwise.

Examples

• If 0 < a < 1 then $a^n \to 0$ as $n \to \infty$.

Since a < 1 and a > 0, it follows that $a^{n+1} < a^n$ and $a^n > 0$ for all $n \in \mathbb{N}$. Hence the sequence $\{a^n\}$ is strictly decreasing and bounded. Therefore it converges to some $x \in \mathbb{R}$. Since $a^{n+1} = a^n a$ for all n, it follows that $a^{n+1} \to xa$ as $n \to \infty$. However the sequence $\{a^{n+1}\}$ is a subsequence of $\{a^n\}$, hence it converges to the same limit as $\{a^n\}$. Thus xa = x, which implies that x = 0.

• If a > 1 then $a^n \to +\infty$ as $n \to \infty$.

Since a > 1, it follows that $a^{n+1} > a^n > 1$ for all $n \in \mathbb{N}$. Hence the sequence $\{a^n\}$ is strictly increasing. Then $\{a^n\}$ either diverges to $+\infty$ or converges to a limit x. In the latter case we argue as above to obtain that x = 0. However this contradicts with $a^n > 1$. Thus $\{a^n\}$ diverges to $+\infty$.

Examples

• If a > 0 then $\sqrt[n]{a} \to 1$ as $n \to \infty$.

Remark. By definition, $\sqrt[n]{a}$ is a unique positive number r such that $r^n = a$.

If $a \ge 1$ then $a^{n+1} \ge a^n \ge 1$ for all $n \in \mathbb{N}$, which implies that $\sqrt[n(n+1)]{a^{n+1}} \ge \sqrt[n(n+1)]{a^n} \ge 1$. Notice that $\sqrt[n(n+1)]{a^{n+1}} = \sqrt[n]{a}$ and $\sqrt[n(n+1)]{a^n} = \sqrt[n+1]{a}$. Hence $\sqrt[n]{a} \ge \sqrt[n+1]{a} \ge 1$ for all n. Similarly, in the case 0 < a < 1 we obtain that $\sqrt[n]{a} < \sqrt[n+1]{a} < 1$ for all n.

In either case, the sequence $\{\sqrt[n]{a}\}$ is monotone and bounded. Therefore it converges to a limit x. Then the sequence $\{\sqrt[2n]{a}\}$ also converges to x since it is a subsequence of $\{\sqrt[n]{a}\}$. At the same time, $(\sqrt[2n]{a})^2 = \sqrt[n]{a}$, which implies that $x^2 = x$. Hence x = 0 or x = 1. However the limit cannot be 0 since $\sqrt[n]{a} \ge \min(a, 1) > 0$. Thus x = 1.

Examples

• The sequence $x_n = \left(1 + \frac{1}{n}\right)^n$, n = 1, 2, 3, ...,is increasing and bounded, hence it is convergent. *Remark.* The limit is the number e = 2.71828...First let us show that $\{x_n\}$ is increasing. For any $n \in \mathbb{N}$, $x_n = \left(1 + \frac{1}{n}\right)^n = \left(\frac{n+1}{n}\right)^n = \frac{(n+1)^n}{n^n}.$ If $n \ge 2$ then, similarly, $x_{n-1} = \frac{n^{n-1}}{(n-1)^{n-1}}$. Hence $\frac{x_n}{x_{n-1}} = \frac{(n+1)^n}{n^n} \cdot \frac{(n-1)^{n-1}}{n^{n-1}} = \left(\frac{(n+1)(n-1)}{n^2}\right)^{n-1} \cdot \frac{n+1}{n}$ $= \left(\frac{n^2 - 1}{n^2}\right)^{n-1} \cdot \frac{n+1}{n} = \left(1 - \frac{1}{n^2}\right)^{n-1} \left(1 + \frac{1}{n}\right).$

To proceed, we need the following estimate.

Lemma If 0 < x < 1, then $(1-x)^k \ge 1 - kx$ for all $k \in \mathbb{N}$. Using the lemma, we obtain that

$$\frac{x_n}{x_{n-1}} = \left(1 - \frac{1}{n^2}\right)^{n-1} \left(1 + \frac{1}{n}\right) \ge \left(1 - \frac{n-1}{n^2}\right) \left(1 + \frac{1}{n}\right)$$
$$= 1 - \frac{n-1}{n^2} + \frac{1}{n} - \frac{n-1}{n^3} = 1 + \frac{1}{n^2} - \frac{n-1}{n^3} = 1 + \frac{1}{n^3} > 1.$$

Thus the sequence $\{x_n\}$ is strictly increasing.

Proof of the lemma: The lemma is proved by induction on k. The case k = 1 is trivial as $(1 - x)^1 = 1 - 1 \cdot x$. Now assume that the inequality $(1 - x)^k \ge 1 - kx$ holds for some $k \in \mathbb{N}$ and all $x \in (0, 1)$. Then $(1 - x)^{k+1} = (1 - x)^k (1 - x)$ $\ge (1 - kx)(1 - x) = 1 - kx - x + kx^2 > 1 - (k + 1)x$.

Remark. According to the Binomial Formula,

$$(1-x)^k = 1 - kx + \frac{k(k-1)}{2}x^2 - \dots$$

Now let us show that the sequence $\{x_n\}$ is bounded. Since $\{x_n\}$ is increasing, it is enough to show that it is bounded above. By the Binomial Formula,

$$x_n = \left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{n}\right)^k = \sum_{k=0}^n \frac{n!}{k! (n-k)!} \left(\frac{1}{n}\right)^k$$

Observe that $\frac{n!}{(n-k)!} \left(\frac{1}{n}\right)^k \le 1$ for all $k, \ 0 \le k \le n$.

It follows that
$$x_n \leq \sum_{k=0}^n \frac{1}{k!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$
.

Further observe that $k! \ge 2^{k-1}$ for all $k \ge 0$. Therefore we obtain

$$x_n \leq 1 + 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 3 - \frac{1}{2^{n-1}} < 3.$$

Cauchy sequences

Definition. A sequence $\{x_n\}$ of real numbers is called a **Cauchy sequence** if for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < \varepsilon$ whenever $n, m \ge N$.

Theorem Any convergent sequence is Cauchy.

Proof: Let $\{x_n\}$ be a convergent sequence and *a* be its limit. Then for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n - a| < \varepsilon/2$ whenever $n \ge N$. Now for any natural numbers $n, m \ge N$ we have $|x_n - x_m| = |x_n - a + a - x_m| \le |x_n - a| + |x_m - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus $\{x_n\}$ is a Cauchy sequence.

Theorem Any Cauchy sequence is convergent.

Proof: Suppose $\{x_n\}$ is a Cauchy sequence. First let us show that this sequence is bounded. Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < 1$ whenever $n, m \ge N$. In particular, $|x_n - x_N| < 1$ for all $n \ge N$. Then $|x_n| = |(x_n - x_N) + x_N| \le |x_n - x_N| + |x_N| < |x_N| + 1$. It follows that for any $n \in \mathbb{N}$ we have $|x_n| \le M$, where $M = \max(|x_1|, |x_2|, \dots, |x_{N-1}|, |x_N| + 1)$.

Now the Bolzano-Weierstrass theorem implies that $\{x_n\}$ has a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ converging to some $a\in\mathbb{R}$. Given $\varepsilon > 0$, there exists $K_{\varepsilon}\in\mathbb{N}$ such that $|x_{n_k}-a|<\varepsilon/2$ for all $k\geq K_{\varepsilon}$. Also, there exists $N_{\varepsilon}\in\mathbb{N}$ such that $|x_n-x_m|<\varepsilon/2$ whenever $n,m\geq N_{\varepsilon}$. Let $k=\max(K_{\varepsilon},N_{\varepsilon})$. Then $k\geq K_{\varepsilon}$ and $n_k\geq k\geq N_{\varepsilon}$. Therefore for any $n\geq N_{\varepsilon}$ we obtain $|x_n-a|=|(x_n-x_{n_k})+(x_{n_k}-a)|\leq |x_n-x_{n_k}|+|x_{n_k}-a|<\varepsilon/2+\varepsilon/2=\varepsilon$. Thus the entire sequence $\{x_n\}$ converges to a.

Limit points

Definition. A **limit point** of a sequence $\{x_n\}$ is the limit of any convergent subsequence of $\{x_n\}$.

Examples and properties.

- A convergent sequence has only one limit point, its limit.
- Any bounded sequence has at least one limit point.
- If a bounded sequence is not convergent, then it has at least two limit points.
- The sequence $\{(-1)^n\}$ has two limit points, 1 and -1.
- If all elements of a sequence belong to a closed interval [a, b], then all its limit points belong to [a, b], as well
- [a, b], then all its limit points belong to [a, b] as well.
- The set of limit points of the sequence $\{\sin n\}$ is the entire interval [-1, 1].
- If a sequence diverges to infinity, then it has no limit points.
- If a sequence does not diverge to infinity, then it has a bounded subsequence and hence it has a limit point.