MATH 409

Advanced Calculus I
Lecture 8:
Monotone sequences (continued).
Cauchy sequences.
Limit points.

Monotone sequences

Definition. A sequence $\left\{x_{n}\right\}$ is called increasing (or nondecreasing) if $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$. It is called strictly increasing if $x_{n}<x_{n+1}$ for all $n \in \mathbb{N}$.
Likewise, the sequence $\left\{x_{n}\right\}$ is called decreasing (or nonincreasing) if $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$. It is strictly decreasing if $x_{n}>x_{n+1}$ for all $n \in \mathbb{N}$. Increasing and decreasing sequences are called monotone.

Theorem Any monotone sequence converges to a limit if bounded, and diverges to infinity otherwise.

Examples

- If $0<a<1$ then $a^{n} \rightarrow 0$ as $n \rightarrow \infty$.

Since $a<1$ and $a>0$, it follows that $a^{n+1}<a^{n}$ and $a^{n}>0$ for all $n \in \mathbb{N}$. Hence the sequence $\left\{a^{n}\right\}$ is strictly decreasing and bounded. Therefore it converges to some $x \in \mathbb{R}$. Since $a^{n+1}=a^{n} a$ for all n, it follows that $a^{n+1} \rightarrow x a$ as $n \rightarrow \infty$. However the sequence $\left\{a^{n+1}\right\}$ is a subsequence of $\left\{a^{n}\right\}$, hence it converges to the same limit as $\left\{a^{n}\right\}$. Thus $x a=x$, which implies that $x=0$.

- If $a>1$ then $a^{n} \rightarrow+\infty$ as $n \rightarrow \infty$.

Since $a>1$, it follows that $a^{n+1}>a^{n}>1$ for all $n \in \mathbb{N}$. Hence the sequence $\left\{a^{n}\right\}$ is strictly increasing. Then $\left\{a^{n}\right\}$ either diverges to $+\infty$ or converges to a limit x. In the latter case we argue as above to obtain that $x=0$. However this contradicts with $a^{n}>1$. Thus $\left\{a^{n}\right\}$ diverges to $+\infty$.

Examples

- If $a>0$ then $\sqrt[n]{a} \rightarrow 1$ as $n \rightarrow \infty$.

Remark. By definition, $\sqrt[n]{a}$ is a unique positive number r such that $r^{n}=a$.
If $a \geq 1$ then $a^{n+1} \geq a^{n} \geq 1$ for all $n \in \mathbb{N}$, which implies that $\sqrt[n(n+1)]{a^{n+1}} \geq \sqrt[n(n+1)]{a^{n}} \geq 1$. Notice that $\sqrt[n(n+1)]{a^{n+1}}=\sqrt[n]{a}$ and $\sqrt[n(n+1)]{a^{n}}=\sqrt[n+1]{a}$. Hence $\sqrt[n]{a} \geq \sqrt[n+1]{a} \geq 1$ for all n. Similarly, in the case $0<a<1$ we obtain that $\sqrt[n]{a}<\sqrt[n+1]{a}<1$ for all n.
In either case, the sequence $\{\sqrt[n]{a}\}$ is monotone and bounded. Therefore it converges to a limit x. Then the sequence $\{\sqrt[2 n]{a}\}$ also converges to x since it is a subsequence of $\{\sqrt[n]{a}\}$. At the same time, $(\sqrt[2 n]{a})^{2}=\sqrt[n]{a}$, which implies that $x^{2}=x$. Hence $x=0$ or $x=1$. However the limit cannot be 0 since $\sqrt[n]{a} \geq \min (a, 1)>0$. Thus $x=1$.

Examples

- The sequence $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n=1,2,3, \ldots$, is increasing and bounded, hence it is convergent. Remark. The limit is the number $e=2.71828 \ldots$

First let us show that $\left\{x_{n}\right\}$ is increasing. For any $n \in \mathbb{N}$,
$x_{n}=\left(1+\frac{1}{n}\right)^{n}=\left(\frac{n+1}{n}\right)^{n}=\frac{(n+1)^{n}}{n^{n}}$.
If $n \geq 2$ then, similarly, $x_{n-1}=\frac{n^{n-1}}{(n-1)^{n-1}}$. Hence

$$
\begin{aligned}
\frac{x_{n}}{x_{n-1}} & =\frac{(n+1)^{n}}{n^{n}} \cdot \frac{(n-1)^{n-1}}{n^{n-1}}=\left(\frac{(n+1)(n-1)}{n^{2}}\right)^{n-1} \cdot \frac{n+1}{n} \\
& =\left(\frac{n^{2}-1}{n^{2}}\right)^{n-1} \cdot \frac{n+1}{n}=\left(1-\frac{1}{n^{2}}\right)^{n-1}\left(1+\frac{1}{n}\right) .
\end{aligned}
$$

To proceed, we need the following estimate.
Lemma If $0<x<1$, then $(1-x)^{k} \geq 1-k x$ for all $k \in \mathbb{N}$. Using the lemma, we obtain that

$$
\begin{aligned}
& \frac{x_{n}}{x_{n-1}}=\left(1-\frac{1}{n^{2}}\right)^{n-1}\left(1+\frac{1}{n}\right) \geq\left(1-\frac{n-1}{n^{2}}\right)\left(1+\frac{1}{n}\right) \\
& \quad=1-\frac{n-1}{n^{2}}+\frac{1}{n}-\frac{n-1}{n^{3}}=1+\frac{1}{n^{2}}-\frac{n-1}{n^{3}}=1+\frac{1}{n^{3}}>1 .
\end{aligned}
$$

Thus the sequence $\left\{x_{n}\right\}$ is strictly increasing.
Proof of the lemma: The lemma is proved by induction on k. The case $k=1$ is trivial as $(1-x)^{1}=1-1 \cdot x$. Now assume that the inequality $(1-x)^{k} \geq 1-k x$ holds for some $k \in \mathbb{N}$ and all $x \in(0,1)$. Then $(1-x)^{k+1}=(1-x)^{k}(1-x)$ $\geq(1-k x)(1-x)=1-k x-x+k x^{2}>1-(k+1) x$.
Remark. According to the Binomial Formula,

$$
(1-x)^{k}=1-k x+\frac{k(k-1)}{2} x^{2}-\ldots
$$

Now let us show that the sequence $\left\{x_{n}\right\}$ is bounded. Since $\left\{x_{n}\right\}$ is increasing, it is enough to show that it is bounded above. By the Binomial Formula,
$x_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}\left(\frac{1}{n}\right)^{k}$.
Observe that $\frac{n!}{(n-k)!}\left(\frac{1}{n}\right)^{k} \leq 1$ for all $k, 0 \leq k \leq n$.
It follows that $\quad x_{n} \leq \sum_{k=0}^{n} \frac{1}{k!}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}$.
Further observe that $k!\geq 2^{k-1}$ for all $k \geq 0$. Therefore we obtain

$$
x_{n} \leq 1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}=3-\frac{1}{2^{n-1}}<3
$$

Cauchy sequences

Definition. A sequence $\left\{x_{n}\right\}$ of real numbers is called a Cauchy sequence if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$ whenever $n, m \geq N$.

Theorem Any convergent sequence is Cauchy.
Proof: Let $\left\{x_{n}\right\}$ be a convergent sequence and a be its limit.
Then for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon / 2$ whenever $n \geq N$. Now for any natural numbers $n, m \geq N$ we have
$\left|x_{n}-x_{m}\right|=\left|x_{n}-a+a-x_{m}\right| \leq\left|x_{n}-a\right|+\left|x_{m}-a\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$.
Thus $\left\{x_{n}\right\}$ is a Cauchy sequence.

Theorem Any Cauchy sequence is convergent.

Proof: Suppose $\left\{x_{n}\right\}$ is a Cauchy sequence. First let us show that this sequence is bounded. Since $\left\{x_{n}\right\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<1$ whenever $n, m \geq N$. In particular, $\left|x_{n}-x_{N}\right|<1$ for all $n \geq N$. Then $\left|x_{n}\right|=\left|\left(x_{n}-x_{N}\right)+x_{N}\right| \leq\left|x_{n}-x_{N}\right|+\left|x_{N}\right|<\left|x_{N}\right|+1$. It follows that for any $n \in \mathbb{N}$ we have $\left|x_{n}\right| \leq M$, where $M=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N-1}\right|,\left|x_{N}\right|+1\right)$.
Now the Bolzano-Weierstrass theorem implies that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ converging to some $a \in \mathbb{R}$. Given $\varepsilon>0$, there exists $K_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n_{k}}-a\right|<\varepsilon / 2$ for all $k \geq K_{\varepsilon}$. Also, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon / 2$ whenever $n, m \geq N_{\varepsilon}$. Let $k=\max \left(K_{\varepsilon}, N_{\varepsilon}\right)$. Then $k \geq K_{\varepsilon}$ and $n_{k} \geq k \geq N_{\varepsilon}$. Therefore for any $n \geq N_{\varepsilon}$ we obtain $\left|x_{n}-a\right|=\left|\left(x_{n}-x_{n_{k}}\right)+\left(x_{n_{k}}-a\right)\right| \leq\left|x_{n}-x_{n_{k}}\right|+\left|x_{n_{k}}-a\right|<$ $\varepsilon / 2+\varepsilon / 2=\varepsilon$. Thus the entire sequence $\left\{x_{n}\right\}$ converges to a.

Limit points

Definition. A limit point of a sequence $\left\{x_{n}\right\}$ is the limit of any convergent subsequence of $\left\{x_{n}\right\}$.
Examples and properties.

- A convergent sequence has only one limit point, its limit.
- Any bounded sequence has at least one limit point.
- If a bounded sequence is not convergent, then it has at least two limit points.
- The sequence $\left\{(-1)^{n}\right\}$ has two limit points, 1 and -1 .
- If all elements of a sequence belong to a closed interval $[a, b]$, then all its limit points belong to $[a, b]$ as well.
- The set of limit points of the sequence $\{\sin n\}$ is the entire interval $[-1,1]$.
- If a sequence diverges to infinity, then it has no limit points.
- If a sequence does not diverge to infinity, then it has a bounded subsequence and hence it has a limit point.

