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Advanced Calculus I

Lecture 9:

Limit supremum and infimum.

Limits of functions.



Limit points

Definition. A limit point of a sequence {xn} is the
limit of any convergent subsequence of {xn}.

Properties of limit points.

• A convergent sequence has only one limit point, its limit.

• Any bounded sequence has at least one limit point.

• If a bounded sequence is not convergent, then it has at
least two limit points.

• If all elements of a sequence belong to a closed interval
[a, b], then all its limit points belong to [a, b] as well.

• If a sequence diverges to infinity, then it has no limit points.

• If a sequence does not diverge to infinity, then it has a
bounded subsequence and hence it has a limit point.



Limit supremum and infimum

Let {xn} be a bounded sequence of real numbers. For any
n ∈ N let En denote the set of all numbers of the form xk ,
where k ≥ n. The set En is bounded, hence supEn and
inf En exist. Observe that the sequence {supEn} is
decreasing, the sequence {inf En} is increasing (since
E1,E2, . . . are nested sets), and both are bounded. Therefore
both sequences are convergent.

Definition. The limit of {supEn} is called the limit

supremum of the sequence {xn} and denoted
lim sup
n→∞

xn.

The limit of {inf En} is called the limit infimum of
the sequence {xn} and denoted lim inf

n→∞
xn.



Properties of lim sup and lim inf.

• lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

• lim inf
n→∞

xn and lim sup
n→∞

xn are limit points of the

sequence {xn}.

• All limit points of {xn} are contained in the

interval

[

lim inf
n→∞

xn, lim sup
n→∞

xn

]

.

• The sequence {xn} converges to a limit a if and
only if lim inf

n→∞
xn = lim sup

n→∞
xn = a.



Limit of a function

Let I ⊂ R be an open interval and a ∈ I . Suppose

f : E → R is a function defined on a set E ⊃ I \ {a}.

Definition. We say that the function f converges

to a limit L ∈ R at the point a if for every ε > 0
there exists δ = δ(ε) > 0 such that

0 < |x − a| < δ implies |f (x)− L| < ε.

Notation: L = lim
x→a

f (x) or f (x) → L as x → a.

Remark. The set (a − δ, a) ∪ (a, a+ δ) is called the
punctured δ-neighborhood of a. Convergence to L means
that, given ε > 0, the image of this set under the map f is
contained in the ε-neighborhood (L− ε, L+ ε) of L provided
that δ is small enough.



Limits of functions vs. limits of sequences

Theorem Let I be an open interval containing a
point a ∈ R and f be a function defined on

I \ {a}. Then f (x) → L as x → a if and only if
for any sequence {xn} of elements of I \ {a},

lim
n→∞

xn = a implies lim
n→∞

f (xn) = L.

Remark. Using this sequential characterization of
limits, we can derive limit theorems for convergence

of functions from analogous theorems dealing with
convergence of sequences.



Limits of functions vs. limits of sequences

Proof of the theorem: Suppose that f (x) → L as x → a.
Consider an arbitrary sequence {xn} of elements of the set
I \ {a} converging to a. For any ε > 0 there exists δ > 0
such that 0 < |x − a| < δ implies |f (x)− L| < ε for all
x ∈ R. Further, there exists N ∈ N such that |xn − a| < δ
for all n ≥ N. Then |f (xn)− L| < ε for all n ≥ N. We
conclude that f (xn) → L as n → ∞.

Conversely, suppose that f (x) 6→ L as x → a. Then there
exists ε > 0 such that for any δ > 0 the image of the
punctured neighborhood (a − δ, a) ∪ (a, a + δ) of the point a
under the map f is not contained in (L− ε, L+ ε).
In particular, for any n ∈ N there exists a point
xn ∈ (a − 1/n, a) ∪ (a, a + 1/n) such that xn ∈ I and
|f (xn)− L| ≥ ε. We have that the sequence {xn} converges
to a and xn ∈ I \ {a}. However f (xn) 6→ L as n → ∞.



Limit theorems

Squeeze Theorem If lim
x→a

f (x) = lim
x→a

g(x) = L

and f (x) ≤ h(x) ≤ g(x) for all x in a punctured

neighborhood of the point a, then lim
x→a

h(x) = L.

Comparison Theorem If lim
x→a

f (x) = L,

lim
x→a

g(x) = M , and f (x) ≤ g(x) for all x in

a punctured neighborhood of the point a, then

L ≤ M .



Limit theorems

Theorem If lim
x→a

f (x) = L and lim
x→a

g(x) = M ,

then
lim
x→a

(f + g)(x) = L+M ,

lim
x→a

(f − g)(x) = L−M ,

lim
x→a

(fg)(x) = LM .

If, additionally, M 6= 0 then

lim
x→a

(f /g)(x) = L/M .



Divergence to infinity

Let I ⊂ R be an open interval and a ∈ I . Suppose

f : E → R is a function defined on a set E ⊃ I \ {a}.

Definition. We say that the function f diverges to

+∞ at the point a if for every C ∈ R there exists

δ = δ(C ) > 0 such that

0 < |x − a| < δ implies f (x) > C .

Notation: lim
x→a

f (x) = +∞ or f (x) → +∞ as

x → a.

Similarly, we define the divergence to −∞ at the
point a.



One-sided limits

Let f : E → R be a function defined on a set E ⊂ R.

Definition. We say that f converges to a

right-hand limit L ∈ R at a point a ∈ R if the
domain E contains an interval (a, b) and for every

ε > 0 there exists δ = δ(ε) > 0 such that

a < x < a + δ implies |f (x)− L| < ε.

Notation: L = lim
x→a+

f (x).

Similarly, we define the left-hand limit lim
x→a−

f (x).

Theorem f (x) → L as x → a if and only if
lim

x→a+

f (x) = lim
x→a−

f (x) = L.



Limits at infinity

Let f : E → R be a function defined on a set
E ⊂ R.

Definition. We say that f converges to a limit

L ∈ R as x → +∞ if the domain E contains an
interval (a,+∞) and for every ε > 0 there exists

C = C (ε) ∈ R such that

x > C implies |f (x)− L| < ε.

Notation: L = lim
x→+∞

f (x) or f (x) → L as

x → +∞.

Similarly, we define the limit lim
x→−∞

f (x).



Examples

• Constant function: f (x) = c for all x ∈ R and
some c ∈ R.

lim
x→a

f (x) = c for all a ∈ R. Also, lim
x→±∞

f (x) = c.

• Identity function: f (x) = x , x ∈ R.

lim
x→a

f (x) = a for all a ∈ R. Also, lim
x→+∞

f (x) = +∞ and

lim
x→−∞

f (x) = −∞.

• Step function: f (x) =

{

1 if x > 0,

0 if x ≤ 0.

lim
x→0+

f (x) = 1, lim
x→0−

f (x) = 0.



Examples

• f : R \ {0} → R, f (x) =
1

x
.

lim
x→a

f (x) = 1/a for all a 6= 0, lim
x→0+

f (x) = +∞,

lim
x→0−

f (x) = −∞. Also, lim
x→±∞

f (x) = 0.

• f : R \ {0} → R, f (x) = sin
1

x
.

lim
x→0+

f (x) does not exist since f ((0, δ)) = [−1, 1] for any

δ > 0.

• f : R \ {0} → R, f (x) = x sin
1

x
.

lim
x→0

f (x) = 0, which follows from the Squeeze Theorem since

−|x | ≤ |f (x)| ≤ |x |.



Examples

• Dirichlet function: f (x) =

{

1 if x ∈ Q,
0 if x ∈ R \Q.

lim
x→a

f (x) does not exist since f ((c, d)) = {0, 1} for any

interval (c, d). In other words, both rational and irrational
points are dense in R.

• Riemann function:

f (x) =

{

1/q if x = p/q, a reduced fraction,

0 if x ∈ R \Q.

lim
x→a

f (x) = 0 for all a ∈ R. Indeed, for any n ∈ N and a

bounded interval (c, d), there are only finitely many points
x ∈ (c, d) such that f (x) ≥ 1/n. On the other hand,
lim

x→+∞

f (x) and lim
x→−∞

f (x) do not exist.


