MATH 409
 Advanced Calculus I

Lecture 10:
Continuity.
Properties of continuous functions.

Continuity

Definition. Given a set $E \subset \mathbb{R}$, a function $f: E \rightarrow \mathbb{R}$, and a point $c \in E$, the function f is continuous at c if for any $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-c|<\delta$ and $x \in E$ imply $|f(x)-f(c)|<\varepsilon$.
We say that the function f is continuous on a set $E_{0} \subset E$ if f is continuous at every point $c \in E_{0}$. The function f is continuous if it is continuous on the entire domain E.

Remarks. - In the case $E=(a, b)$, the function f is continuous at a point $c \in E$ if and only if $f(c)=\lim _{x \rightarrow c} f(x)$.

- In the case $E=[a, b]$, the function f is continuous at a point $c \in(a, b)$ if $f(c)=\lim _{x \rightarrow c} f(x)$. It is continuous at a if $f(a)=\lim _{x \rightarrow a+} f(x)$ and continuous at b if $f(b)=\lim _{x \rightarrow b-} f(x)$.

Theorem A function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of $E, x_{n} \rightarrow c$ as $n \rightarrow \infty$ implies $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$.

Theorem Suppose that functions $f, g: E \rightarrow \mathbb{R}$ are both continuous at a point $c \in E$. Then the functions $f+g, f-g$, and $f g$ are also continuous at c. If, additionally, $g(c) \neq 0$, then the function f / g is continuous at c as well.

Bounded functions

Definition. A function $f: E \rightarrow \mathbb{R}$ is bounded on a subset $E_{0} \subset E$ if there exists $C>0$ such that $|f(x)| \leq C$ for all $x \in E_{0}$. In the case $E_{0}=E$, we say that f is bounded.
The function f is bounded above on E_{0} if there exists $C \in \mathbb{R}$ such that $f(x) \leq C$ for all $x \in E_{0}$. It is bounded below on E_{0} if there exists $C \in \mathbb{R}$ such that $f(x) \geq C$ for all $x \in E_{0}$.
Equivalently, f is bounded on E_{0} if the image $f\left(E_{0}\right)$ is a bounded subset of \mathbb{R}. Likewise, the function f is bounded above on E_{0} if the image $f\left(E_{0}\right)$ is bounded above. It is bounded below on E_{0} if $f\left(E_{0}\right)$ is bounded below.

Example. $h: \mathbb{R} \rightarrow \mathbb{R}, \quad h(0)=0, \quad h(x)=1 / x$ for $x \neq 0$.
The function h is unbounded. At the same time, it is bounded on $[1, \infty)$ and on $(-\infty,-1]$. It is bounded below on $(0, \infty)$ and bounded above on $(-\infty, 0)$.

Theorem If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: l \rightarrow \mathbb{R}$ is bounded.

Proof: Assume that a function $f: I \rightarrow \mathbb{R}$ is unbounded. Then for every $n \in \mathbb{N}$ there exists a point $x_{n} \in I$ such that $\left|f\left(x_{n}\right)\right|>n$. We obtain a sequence $\left\{x_{n}\right\}$ of elements of I such that the sequence $\left\{f\left(x_{n}\right)\right\}$ diverges to infinity.
Since the interval $/$ is bounded, the sequence $\left\{x_{n}\right\}$ has a convergent subsequence $\left\{x_{n_{k}}\right\}$ (due to the BolzanoWeierstrass Theorem). Let $c=\lim _{k \rightarrow \infty} x_{n_{k}}$. Then $c \in[a, b]$ (due to the Comparison Theorem). Since the sequence $\left\{f\left(x_{n_{k}}\right)\right\}$ is a subsequence of $\left\{f\left(x_{n}\right)\right\}$, it diverges to infinity. In particular, it does not converge to $f(c)$. It follows that the function f is discontinuous at c.
Thus any continuous function on $[a, b]$ has to be bounded.

Discontinuities

A function $f: E \rightarrow \mathbb{R}$ is discontinuous at a point $c \in E$ if it is not continuous at c. There are various kinds of discontinuities including the following ones.

- The function f has a jump discontinuity at a point c if both one-sided limits at c exist, but they are not equal: $\lim _{x \rightarrow c-} f(x) \neq \lim _{x \rightarrow c+} f(x)$.
- The function f has a removable discontinuity at a point c if the limit at c exists, but it is different from the value at c : $\lim _{x \rightarrow c} f(x) \neq f(c)$.
- If the function f is continuous at a point c, then it is locally bounded at c, which means that f is bounded on the set $(c-\delta, c+\delta) \cap E$ provided $\delta>0$ is small enough. Hence any function not locally bounded at c is discontinuous at c.

Examples

- Constant function: $f(x)=a$ for all $x \in \mathbb{R}$ and some $a \in \mathbb{R}$.
Since $\lim _{x \rightarrow c} f(x)=a$ for all $c \in \mathbb{R}$, the function f is continuous.
- Identity function: $f(x)=x, x \in \mathbb{R}$.

Since $\lim _{x \rightarrow c} f(x)=c$ for all $c \in \mathbb{R}$, the function is continuous.

- Step function: $f(x)= \begin{cases}1 & \text { if } x>0, \\ 0 & \text { if } x \leq 0 .\end{cases}$

Since $\lim _{x \rightarrow 0-} f(x)=0$ and $\lim _{x \rightarrow 0+} f(x)=1$, the function has a jump discontinuity at 0 . It is continuous on $\mathbb{R} \backslash\{0\}$.

Examples

- $f(0)=0$ and $f(x)=\frac{1}{x}$ for $x \neq 0$.

Since $\lim _{x \rightarrow c} f(x)=1 / c$ for all $c \neq 0$, the function f is continuous on $\mathbb{R} \backslash\{0\}$. It is discontinuous at 0 as it is not locally bounded at 0 .

- $f(0)=0$ and $f(x)=\sin \frac{1}{x}$ for $x \neq 0$.

Since $\lim _{x \rightarrow 0+} f(x)$ does not exist, the function is discontinuous at 0 . Notice that it is neither jump nor removable discontinuity, and the function f is bounded.

- $f(0)=0$ and $f(x)=x \sin \frac{1}{x}$ for $x \neq 0$.

Since $\lim _{x \rightarrow 0} f(x)=0$, the function is continuous at 0 .

Examples

- Dirichlet function: $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$

Since $\lim _{x \rightarrow c} f(x)$ never exists, the function has no points of continuity.

- Riemann function:
$f(x)=\left\{\begin{array}{cl}1 / q & \text { if } x=p / q, \text { a reduced fraction, } \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{array}\right.$
Since $\lim _{x \rightarrow c} f(x)=0$ for all $c \in \mathbb{R}$, the function f is continuous at irrational points and discontinuous at rational points. Moreover, all discontinuities are removable.

Extreme Value Theorem

Theorem If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: I \rightarrow \mathbb{R}$ attains its extreme values (maximum and minimum) on l. To be precise, there exist points $x_{\text {min }}, x_{\text {max }} \in I$ such that

$$
f\left(x_{\min }\right) \leq f(x) \leq f\left(x_{\max }\right) \text { for all } x \in I
$$

Remark 1. The theorem may not hold if the interval I is not closed. Counterexample: $f(x)=x, x \in(0,1)$. Neither maximum nor minimum is attained.

Remark 2. The theorem may not hold if the interval $/$ is not bounded. Counterexample: $f(x)=1 /\left(1+x^{2}\right), x \in[0, \infty)$. The maximal value is attained at 0 but the minimal value is not attained.

Extreme Value Theorem

Proof of the theorem: Since the function f is continuous, it is bounded on I. Hence $m=\inf _{x \in I} f(x)$ and $M=\sup _{x \in I} f(x)$ are well-defined numbers. In different notation: $m=\inf f(I)$, $M=\sup f(I)$. Clearly, $m \leq f(x) \leq M$ for all $x \in I$.
For any $n \in \mathbb{N}$ the number $M-\frac{1}{n}$ is not an upper bound of the set $f(I)$ while $m+\frac{1}{n}$ is not a lower bound of $f(I)$. Hence we can find points $x_{n}, y_{n} \in I$ such that $f\left(x_{n}\right)>M-\frac{1}{n}$ and $f\left(y_{n}\right)<m+\frac{1}{n}$. By construction, $f\left(x_{n}\right) \rightarrow M$ and $f\left(y_{n}\right) \rightarrow m$ as $n \rightarrow \infty$. The Bolzano-Weierstrass Theorem implies that the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ have convergent subsequences (or, in other words, they have limit points). Let c be a limit point of $\left\{x_{n}\right\}$ and d be a limit point of $\left\{y_{n}\right\}$. Notice that $c, d \in I$. The continuity of f implies that $f(c)$ is a limit point of $\left\{f\left(x_{n}\right)\right\}$ and $f(d)$ is a limit point of $\left\{f\left(y_{n}\right)\right\}$. We conclude that $f(c)=M$ and $f(d)=m$.

Intermediate Value Theorem

Theorem If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous then any number y_{0} that lies between $f(a)$ and $f(b)$ is a value of f, i.e., $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in[a, b]$.

Proof: In the case $f(a)=f(b)$, the theorem is trivial. In the case $f(a)>f(b)$, we notice that the function $-f$ is continuous on $[a, b],-f(a)<-f(b)$, and $-y_{0}$ lies between $-f(a)$ and $-f(b)$. Hence we can assume without loss of generality that $f(a)<f(b)$.
Further, if a number y_{0} lies between $f(a)$ and $f(b)$, then 0 lies between $f(a)-y_{0}$ and $f(b)-y_{0}$. Moreover, the function $g(x)=f(x)-y_{0}$ is continuous on $[a, b]$ and $g(a)<g(b)$ if and only if $f(a)<f(b)$. Hence it is no loss to assume that $y_{0}=0$.
Now the theorem is reduced to the following special case.

Theorem If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)<0<f(b)$, then $f\left(x_{0}\right)=0$ for some $x_{0} \in(a, b)$. Proof: Let $E=\{x \in[a, b] \mid f(x)>0\}$. The set E is nonempty (as $b \in E$) and bounded (as $E \subset[a, b]$). Therefore $x_{0}=\inf E$ exists. Observe that $x_{0} \in[a, b]$ ($x_{0} \leq b$ as $b \in E ; x_{0} \geq a$ as a is a lower bound of E). To complete the proof, we need the following lemma.
Lemma If a function f is continuous at a point c and $f(c) \neq 0$, then f maintains its sign in a sufficiently small neighborhood of c.
The lemma implies that $f\left(x_{0}\right)=0$. Indeed, if $f\left(x_{0}\right) \neq 0$ then for some $\delta>0$ the function f maintains its sign in the interval $\left(x_{0}-\delta, x_{0}+\delta\right) \cap[a, b]$. In the case $f\left(x_{0}\right)>0$, we obtain that $x_{0}>a$ and x_{0} is not a lower bound of E. In the case $f\left(x_{0}\right)<0$, we obtain that $x_{0}<b$ and x_{0} is not the greatest lower bound of E. Either way we arrive at a contradiction.

Lemma If a function f is continuous at a point c and $f(c) \neq 0$, then f maintains its sign in a sufficiently small neighborhood of c.

Proof of lemma: Since f is continuous at c and $|f(c)|>0$, there exists $\delta>0$ such that $|f(x)-f(c)|<|f(c)|$ whenever $|x-c|<\delta$. The inequality $|f(x)-f(c)|<|f(c)|$ implies that the number $f(x)$ has the same sign as $f(c)$.

Corollary If a real-valued function f is continuous on a closed bounded interval $[a, b]$, then the image $f([a, b])$ is also a closed bounded interval.

Proof: By the Extreme Value Theorem, there exist points $x_{\text {min }}, x_{\text {max }} \in[a, b]$ such that $f\left(x_{\text {min }}\right) \leq f(x) \leq f\left(x_{\text {max }}\right)$ for all $x \in[a, b]$. Let I_{0} denote the closed interval with endpoints $x_{\text {min }}$ and $x_{\text {max }}$. Let J denote the closed interval with endpoints $f\left(x_{\text {min }}\right)$ and $f\left(x_{\text {max }}\right)$. We have that $f([a, b]) \subset J$. The Intermediate Value Theorem implies that $f\left(I_{0}\right)=J$. Since $I_{0} \subset[a, b]$, we obtain that $f([a, b])=J$.

